Australian Government Bureau of Meteorology 1. Tropical Cyclones: Fundamentals and basic processes

- Definitions and naming
- Life cycle
- Structure
- Processes
- Broadscale influences

Should you use these resources please acknowledge the Bureau of Meteorology.

What is a TROPICAL CYCLONE ?

A low pressure system that forms over warm waters having organised deep convection and gales near the centre

Modis Image of Pam courtesy of NASA

+ Australia: extending more than half way around the system centre and persisting for at least six hours.

Same thing ... different names

Tropical cyclone is generic term for Tropical Revolving Storm

Hurricane, Typhoon, Severe Tropical Cyclone (sustained winds >= 64 knots).

(Non-severe) tropical cyclone, tropical storm (winds >= 34 knots, < 64 knots)

From http://earthobservatory.nasa.gov/Newsroom/NewImages/images.php3?img_id=17447

Cyclone Names: by region Australia; SPAC (FMS); PNG; BMKG; JMA (NWPAC)

Bureau of Meteorology

h-ni-ka) (an-thuh-nee) (ah-les-ee-uh)	Alfred				South Pacific Ocean		
	(al-fred) Blanche	Ann (an) Blake	List A	List B	List C	List D	List E (Standby)
il-ee) (bee-ahng-kuh) (broos)	(blanch)	(bleyk)	Ana	Arthur	Atu	Amos	Alvin
	Caleb (kei-luhb)	Claudia (klaw-dee-uh)	Bina	Becky	Bune	Bart	Bela
	Debbie* (deb-ee)	Damien (dei-mee-uhn)	Cody	Chip	Cyril	Colin	Cook
llie Errol Edna	Ernie	Esther	Dovi	Denia	Daphne	Donna	Dean
	(ur-nee) Frances	(es-ter) Ferdinand	Eva	Elisa	Evan	Ella	Eden
red-ee) (fee-nuh) (flech-er)	(fran-sis)	(fur-din-and) Gretel	Fili	Fotu	Freda	Frank	Florin
karta TCWC Area of Responsibili	ity^	(gre-tuhl)	Gina	Glen	Port Moresby'	s Area of Re	sponsibility*
List A List B Anggrek Anggur		Harold (har-uhld)	Hagar	Hettie	List B		List B
		Imogen	Irene	Innis	List A	((Standby)
		(im- <i>uh</i> -jen) Joshua	Judy	Joni	Alu		Nou
Bakung Belimbing		(josh-oo- <i>uh</i>) Kimi	Kerry Lola	Ken Lin	Buri		Obaha
Cempaka Duku		(kim-ee)	Mal	Mick	Dodo		Paia
Dahlia Jambu		Lucas (loo-kuhs)	Nat	Nisha	Emau		Ranu
Flamboyan Lengkeng		Marian (mar-ee-uhn)	Olo	Oli	Fere		Sabi
Kenanga Mangga		Noah (noh-uh)	Pita	Pat	Hibu		Тац
Lili Nangka		Odette	Rae	Rene			
Mawar Pisang		(oh-det) Paddy	Sheila	Sarah	lla		Ume
5		(pad-ee)	Tam	Tomas	Kama		Vali
Seroja Rambuta		Ruby (roo-bee)	Urmil		Lobu		Wau
Teratai Sawo		Seth (seth)	Vaianu	Vania	Maila		Auram

http://www.bom.gov.au/cyclone/about/names.shtml

http://severe.worldweather.org/tc/au/tcname.html

http://www.vmgd.gov.vu/vmgd/index.php/forecast-division/tropical-cyclone

http://severe.worldweather.org/tc/sp/tcname.html

The life cycle of a cyclone: genesis, maturing, weakening, decay Every cyclone is unique!

brief Vs long, weak Vs strong, small Vs big, impacts

Hurricane Earl Aug 2010 Image courtesy of CIMSS

The life cycle of a cyclone

Examples CIMSS

March 2015 http://tropic.ssec.wisc.edu/archive/data/stettner/11MAR15/11MAR15.html

What do you notice?

Hires Himawari shows variations over shorter time scales

ST Noul (May15) <u>http://cimss.ssec.wisc.edu/goes/blog/wp-content/uploads/2015/05/150509-</u> <u>10 himawari8 visible band3 STY Noul anim.gif</u>

Yasi http://www.bom.gov.au/cyclone/history/yasi-satellite.shtml

Anatomy of a tropical cyclone inner and outer circulations

Technical parameters

Intensity: max wind, central pressure Size: Gale radius, ROCI (POCI)

Australian Intensity Scale

Cat. No.	Max wi (kn)	nd	Wind Impact
1	34-47	"Damaging" winds	Minor
2	48-63	"Destructive" winds	Moderate
3	64-85		
_		SEVERE	Major
4	86-106	"Very destructive"	Tracy, Yasi*
5	> 106		EXTREME Monica

http://www.bom.gov.au/cyclone/about/#severity

Importance of Size

Size: warning area, duration, waves, surge, spin down rate

R34: 'midget' <60nm; ave 80-100nm; large >120nm Eye diameter: ~5-20nm RMW: 5-30nm;

Simplified: Cyclones as heat engines

Cyclones as heat engines

IN, **UP** and **OUT**

TC Meteorology Key Terms

Convergence & Vorticity (IN), Convection (UP), Outflow (OUT)

IN, UP and OUT

The 3 Dimensional Wind Structure Which one has the highest winds?

Tangential wind

Vertical wind Radial wind

Idealised picture: intensification of winds at low levels

Basic principle: conservation of absolute angular momentum: f = Coriolis parameter $M = rv + \frac{1}{2}fr^2$ r = radiusv = tangential wind r Μ V $v = \frac{M}{m} - \frac{1}{2}fr$ If r decreases, v increases! r **Spin up requires radial convergence**

Modified from R. Smith, Aspects of TC dynamics: Part 1 the Boundary Layer

Bureau of Meteorology

More realistic picture – effect of friction

FD = Frictionally driven inflow

The Planetary Boundary Layer is a momentum sink, Absolute Angular Momentum is not conserved

Modified from R. Smith, Aspects of TC dynamics: Part 1 the Boundary Layer

Circulations at different levels (streamlines and isotachs)

- large scale inflow
- convergence not uniform
- max winds near core

(700-400 hPa) - the 'steering' level

(100-300 hPa)

-cyclonic core for strong TC

- peripheral outflow as anticyclonic (peripheral ridge)

Upper level behaviour – the anticyclonic outflow

upward spiralling air in the core spreads out with height (it diverges) & slows.

- Cyclonic movement decelerates, so 0 tangential velocity ~ 200km from the centre of the TC.
- Anticyclonic upper air movement builds a peripheral ridge (Ri)
- Away from the core winds are the prevailing (environmental) upper winds.
- Vorticity = rotation of air around a vertical axis.

The inner & outer regions of a TC

Inner region (0-100 km) – Convection dominates

- •Large absolute vorticity, small radius of rotation
- •Coriolis effect small cyclostrophic balance
- •Inertially very stable (will resist changes in radial displacement of winds by the environment)
- •Very symmetric (does not interact much with surroundings)
- •Winds adjust to changes in the mass field (heating/cooling, convergence/divergence will lead to changes in the wind).

Outer region (100-600 km) environmental infl.

smaller absolute vorticity, larger radius
Coriolis effect significant – gradient balance.
not so symmetric – influenced by environmental flow (eg monsoon, STR)
mass adjusts to the wind field

Summary

- Defined TCs and naming convention
- Simplified view of TC engine: IN-UP-OUT
- Key terms convergence, convection, vorticity, outflow
- The strongest winds are tangential winds, and are located in the eyewall and within the boundary layer
- Complex dynamics and processes within TCs