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Outline

* Madden-Julian Oscillation (MJO)
e MJO analysis tools
o Kelvin Waves

» Seasonal forecasting
e Brief look at 2021




Formations in 2008
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Madden-Julian Oscillation

* An eastward propagating
wave that circles the globe Iin
about 30-60 days involving
tropical convection.

e Detected in the Outgoing
Longwave Radiation (OLR)
and wind fields across the
tropics.

o Later papers showed that it is
an important modulator of TC
activity, especially in the
Pacific Ocean.




ldealized MJO cross-section
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Rui and Wang (1990)



28] west Indian Ocean 200 mb Velocity Potential fields—
Y one way to track the MJO

East Indian Ocean
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200—hPa Velocity Potential Anomaly: 5°N—5°S

5—day Running Mean Period—Mean Removed
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Time—longitude sections of anomalous 200-hPo velocity potential {x 10* m® s') averaged
between 5'N—5°S for the lost 1B0 doys ending 05 MAR 2012: (Left) S5—day running
means and (Right) 5—dey running meens with period mean removed. Anomalies are
deportures from the 19B1-2010 period daily means. CLIMATE PREDICTION CENTER/NCEP




MJO characteristics

Note signal is much
stronger in eastern
Hemisphere than western

Eastward phase speed is
a lot slower in eastern
than western Hemi
(convective coupling)

In western hemisphere,
upper-level signal usually
much easier to track than
lower-level
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5S-5N: 200-hPa velocity potential anomalies
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MJO Effects In the Atlantic Basin

« The MJO can lose much of its strength before
entering the Atlantic basin.

 |n addition, the MJO Is weakest during the late
summer, near the peak of Atlantic activity.

 Western part of the basin most strongly affected
(Maloney and Hartmann 2000).



Active MJO EOF and corresponding TS and H tracks

A westerly phaset - N
Active MJO in the LT TIUNUA i
western Caribbean Sea '

and Gulf of Mexico
produces more storms
due to:

sIncrease in low-level
convergence (ITCZ
moves farther north)

e - T Eq ' | 10N

Inactive MJO EOF and corresponding TS and H tracks

- B easterly phase o
 Low-level vorticity is

also increased due to
westerly low-level flow

meeting easterly trades

*Upper divergence is
stronger than average
during the westerly
phase, with a drop in
shear as well




Latitude
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Figure 10: Velocity potential composttes for different phases of the MJO cycle with hurncane/typhoon
origin locations. Green shadmg indicates upper level divergence and brow shading indicates upper level
convergence. Open cicles mdicate humicane/typhoon origin centers.
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* Most genesis points are
near or behind the upper-
level divergence center.
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A different way to visualize the MJO
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unfiltered 200 hPa VP anomaly [10° m°s™'] (shading)
unfiltered 200 hPa VP standardized anomaly [+/- 10] (contours)
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Question 1

What phases of the MJO are most favorable
for Atlantic TC activity?

A. Phases 3/4
B. Phases 5/6
C. Phases 7/8
D. Phases 1/2




Normalized Activity by MJO Phase (1974-2007)

MJO Phase NS | NSD H HD | MH | MHD | ACE
Phase 1 27 | 229 | 23 | 135 | 14 4.9 57.5
Phase 2 30 (247 | 25 | 132 | 1.8 4.2 53.0
Phase 3 26 (198 | 1.7 | 121 | 0.9 2.1 41.4
Phase 4 1.7 | 121 | 1.1 8.1 0.7 2.7 32.0
Phase 5 2.7 | 148 | 1.6 6.3 0.7 1.3 35.7
Phase 6 26 | 131 | 1.2 3.9 0.6 0.9 20.3
Phase 7 1.6 9.4 0.6 3.7 0.5 1.1 17.5
Phase 8 19 | 122 | 11 6.5 0.6 1.9 25.3

Ratio of Phases 1+2 | 1.4 2.1 2.7 3.5 2.9 4.6 2.9
to Phases 6+7

From Klotzbach (2010)




MJO Phases 1+2

MJO Phases 6+7
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36 Major Hurricanes 13 Major Hurricanes

MJO Phases 1-2 - Atlantic Major Hurricane Formations | MJO Phases 6-7 - Atlantic Major Hurricane Formations




Adapted from:
Griffin (UW)
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Kelvin Waves

n=—1, k*=1, Kelvin
T T T T

T
Convergence
Divergence
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Matsuno (1966) Kiladis et al. (2009)
e Alternating westerlies and easterlies on the equator Propagation: Eastward
e Enhanced convection where low-level winds converge Phase speed: 10-20 m s!
e Active phase associated with latent heating & the Period: 3-10 days
generation of low-level relative vorticity due to Wavelength: 000—4000 km
presence of meridional flow

 Modifies ITCZ convection, which causes significant
changes to a system’s local environment

Adapted from Carl Schreck 2017
cucs,  [vasa| ocmemcranen NG STATE UNIVERSITY

NASA PMM Grant NNX13AH47G

ncei.noaa.gov



MJO vs. KW

The Madden-Julian Oscillation (MJO) consists of an active

and suppressed phase, dominated by low-level westerly and

easterly anomalies, respectively. Convection is preferred in the

active phase.

e Atypical MJO moves eastward at 4 to 8 m s* with a zonal
extent that spans planetary to synoptic scales.

A Kelvin wave is spatially very similar to the MJO, but is

typically observed at higher zonal wavenumbers and moves

eastward at 10 — 20 m s

« Effects are more constrained within the Tropics and
associated wind anomalies are spatially smaller than the
MJO.

Adapted from Griffin (2014)



Tropical wave + CCKW composite

East Pacific: 40 storms

a) Rain: 5N - 20N b) U850: EQ - 10N
L | L 1 | 1 L 1 L | L L | L L

- ; v Storm-r;'at;velTOIté,'Q_ e Composite Hovmollers of storms
e Al - [ forming at the most favorable
9 1 SN ¢ lags (2-3d) from Kelvin wave
g 51 o crest
L i
0 -« The wave is invigorated with
3 i convection/rainfall, leading to

genesis.
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e CCKW most effective when some
westerly flow already present

cicsnc.org /'~ N/ NASAPMM Science Meeting

D) L (lase] WAUBII NG STATE UNIVERSITY

¥ ncei.noaa.g

NASA PMM Grant NNX13AH47G



Lag (days)

Atlantic CCKWs and genesis

Anomalies: Daily OLR
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Tropical Cyclogenesis Events

Lags {Days)

Tropical cyclogenesis events over the MDR
(5-25°N, 15-65°W) relative to the CCKW during
June-September 1979-2009

* Day O highlights the transition to statistically
significant negative unfiltered OLR anomalies, or the
eastern-most side of the convectively active phase of
the CCKW.

* Error bars indicate the 95% confidence interval.



Lag (days)

Atlantic CCKWs and genesis

Anomalies: Daily OLR 9N - 9N

20 16 12 8 -4 0 4 g8 12 16 20

Tropical Cyclogenesis Events

Tropical cyclogenesis
relative to the Kelvin

wave

Lags {Days)



VT: 2017022800 ECMWF Forecast
IT: 2017022800 +0h unfiltered 200 hPa VP anomaly [10° m®s™]
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“Yet another strong
CCKW is moving
across the eastern
Pacific...This
system should
move through the
eastern Pacific
within the next few
days, with genesis
possible in the far
eastern Pacific
Days 3-5.”

Ana & Trudy form

Sep 13
Sep 18
Sep 23
Sep 28
Oct 03
Oct 08
Oct 13

Oct 18

5S-5N: 200-hPa velocity
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Operational challenges

Real-world CCKWs have day-to-day weather patterns
overlaid on them, making them harder to recognize.

When making genesis forecasts for a particular system,
any CCKW information must be taken in context with the
entire weather situation.

Knowledge about the base state (~120 d mean or ENSO),
MJO phase, time of year and NWP output must all be
considered in concert with CCKW interactions.

For example, if the base state is extremely unfavorable,
can it overcome other enhancing factors? (e.g. most of the
2014 Atlantic hurricane season, 2015 EPac is the counter
example) — 2020 everything formed regardless

31



Current NHC practices

No operational standard on use of CCKW in genesis
forecasts (more than half of forecasters use it).

It is believed that global models handle the MJO much
more accurately than individual CCKWs (too much
dampening), and thus the forecaster can add value to
the deterministic models.

Any adjustments to 5-day genesis probabilities are small
and subjectively determined.

Also used as a way to increase forecaster confidence In
a given situation if conceptual model of CCKWs and
genesis matches model solutions.

32






Operational long-range TC forecasts

 CPC, in combination with other NOAA/federal/university
partners, issues a week 1 and week 2 possible TC risk
areas (in addition to other global hazards)

 These global forecasts are released Tuesday afternoons

« The TC-only forecasts are updated on Friday afternoons, if
necessary, for the Atlantic/E Pacific only during week 1/2

34



Global Tropics Hazards and Benefits Outlook - Climate Prediction Center
Week 1 - Valid: Seg

] -
e

180° 150° 90° W 60° W 30°wW

Sep 28, 2016 - Oct
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Week 2 - Valid:
; Y
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30° N 30° N

20° N

10° N 10° N

o [ o

10°s Lo s

0 S _20° S

30° S 30°S
Confidence Produced: 09/20/2016
High Moderate Forecaster: Rosencrans

Tropical Cyclone Formation [l 777/ Development of a tropical cyclone (tropical depression - TD, or greater strength).
Above-average rainfall |:| "/ WeeKly total rainfall in the upper third of the historical range.
Below-average rainfall \_[ 7 \Weekly total rainfall in the lower third of the historical range.

Above-normal temperatures [ 7-day mean temperatures in the upper third of the historical range.

Below-normal temperatures [ 7-day mean temperatures in the lower third of the historical range.
Product is updated once per week, except from 6/1 - 11/30 for the region from 120E to 0, 0 to 40N. The product targets broad scale conditions
integrated over a 7-day period for US interests only. Consult your local responsible forecast agency.

N, FRERE ') UNIVERSITYATALBANY §5

Central Weather Bureau Srate University of New York
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Seasonal Forecasting is more than this!




Composite of tropical cyclone tracks during
14 moderate to strong El Nino years versus
the next year

El Nifo Years Year after El Nino
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El NiINo versus La Nina

Upper winds

Convection shifted eastward
W ot ¥V .= during El Nino causes more
T R SR shear and sinking air over
| the Atlantic.

Upper winds

I Convection shifted
westward during La Nina
causes less sinking air and
shear over the Atlantic.




El Niho




La Nifa




Vertical Wind Shear

 Tropical cyclones generally require low vertical
wind shear to develop, less than about 20 mph.

o Early-season vertical shear (June-July) relates well
to August-October shear (peak season).

 Since 90% of the season Is usually after 1 August,
useful to update then.



200 mb
(~40,000 ft)




200mb zonal wind anomalies (m/s) during
June-July of 10 ENSO events.
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Sea-Surface Temperatures (SSTs)

 Warmer Atlantic waters generally mean a more active
hurricane season

 Relative warmth of Atlantic to global tropics also important

o Atlantic warmth linked to Atlantic surface ridge strength



Correlation between Atlantic SST and Atlantic Hurricane Activity

rank corr AHGHUC ACEindex
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Composite map of June-July SST anomalies
during 10 active hurricane seasons
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The Atlantic Meridional Mode: SST, wind, and precip anoms

SST, 10m Winds

L eading mode of basin-
wide ocean-atmosphere
Interaction between SST
and low-level winds

Amplifies via the
wind-evaporation-SST
(WES) feedback
mechanism

«Strongest signal during the
spring, but persists into
hurricane season




Mid-latitudes in winter/spring can have an
Impact on the next hurricane season

‘Strong Polar L"aﬁex b " Weaker Polar Vorte s
B e s 4 oy~ B

., 5 2 W

Positive phase of AO Negative Phase of AO

1) Negative NAO/AO in winter/spring (could be preceded by a stratospheric warming
event), leads to weak Atlantic trade winds.

2) Weak trades excite a positive AMM for the summer, leading to warmer-than-
average waters and favorable low-level winds for genesis.



Comparative effects of the AMM (local) and ENSO (remote)
on vertical wind shear in the Atlantic

units: m/s per
standard deviation

Shear regressed onto AMM and N34 indices, and
correlations between the indices and storm activity.

J. P. Kossin, 2008 AMS Annual Meeting



1y
2)

3)

4)
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NOAA Forecast Methodology

Assess states of the ocean and atmosphere.

Use model forecasts for EI Nino/Atlantic SSTs
and incorporate any analog technigues and
dynamical model forecasts of TCs.

Predict range of overall activity and
probabilities of above-, near-, and below-
average seasons.

Qualitative/Quantitative process.

No forecast of hurricane landfalls, just the
total seasonal activity for the entire basin.



CFS-based TS, Hurricanes and ACE Index Forecast

Atlantic Basin— May forecast

Tropical ACE Index

Storms | Hurricanes | % of Median
402 14 4 132
403 15 5 131
404 11 2 94
405 11 2 132
406 10 3 72
407 9 3 106
408 15 5 131
409 14 2 84
410 11 4 88
411 13 6 184
412 11 0 77
413 14 7 166
414 16 8 185
415
416
417

418

2012
Slightly Above Normal
Year
Tropical ACE Index
Storms | Hurricanes | % of Median
Ensemble | 12.6 3.9 121.6
Standard 2.2 2.3 39.0
Deviation
Range | 10-15 2-6 83-161
Model Clim | 10.6 3.8 85.4




Seasonal Forecast Caveats:

1) Even with perfect knowledge of all predictors — only 50-
60% of the variance in TC activity is explained. This could
Increase as dynamical model skill grows.

2) This make a 1-category forecast error possible in 1 out
of 3 or 4 years, and a 2-category error in 1 in ~7 years.

3) In seasonal forecasting, you will be flat wrong some
years despite your best efforts. 2013 is a prime example.



Model Forecast Summary: 2013 Atlantic Outlook

Model predicted ranges (+ 1 o) and mean activity (in parenthesis). The model
averages (yellow) and NOAA's outlook (Red) are shown at bottom.

Model Major ACE (%
Named Storms Hurricanes Hurricanes Median)
CPC Regression:
14-18 (16) 7-9 (8) 3-4.5 (3.75) 140-170 (155)
CPC Binning :
Statistical /| Nino 3.4+SSTA
7.9-21.5(14.7)  4.2-11.5(7.85)  2.1-5.9 (4) 69-217 (143)
CPC Binning
ENSO+SSTA 10.1-21 (15.55) 5.2-11.7 (8.45) 2.8-5.9 (4.35) 106-229 (167)
CFS: Hi-Res T-
382 13.4-19.4 (16.4) 5.2-11.2 (8.2) 111-199 (155)
CFS CFS-V2T126: 1
d 12-16 (14) 6-9 (7.5) 3-4 (3.5) 112-168 (140)
CFS-V2 T126: 2
13-17 (15) 7-10 (8.5) 3-4 (3.5) 121-182 (152)
CFS-V2 T126: 3
13-17 (15) 6-10 (8) 3-4 (3.5) 119-184 (152)
ECMWE: 8.9-16.3 (12.6) 5.5-10.5 (8) 90-167 (128)
European SOOI 7.6-14.4 (11)

14 2 0 39




Why Issue a seasonal hurricane
outlook then?

One of the top questions NOAA gets in the
offseason is “What’s the season going to be
like?”

Large amount of media coverage makes it ideal

to get the preparedness/awareness message
out, even If most people can’t use the forecast.

Gets people thinking about the upcoming
hurricane season/activity.

Specialized users (reinsurance companies,
offshore interests etc.)



Percent of Correctly Forecasted Parameters

100

Q0 - mmm oo
R U B e [
£ 70 ]
O
L 60 f------ SRS EEEEEREEEE SRRl  REEERERE RS  SEEEEERRES SEEEE  BEEREES --
(@]
L
8 50 p------ - - - ---- - --
Y
S 40 - - - 11 EEEEREERES - - --
= Sl O . Dl . i~ . i .
L 20 (- 2 ------- S 1> Ehhhas & =1 s s BSF B =) --

I o o o ~ ' N
S NS < S S S NS =
10 QS --- =1 Dl . Ok |1 SHSW -
N
0
May August May August May August May August May August
Outlooks Outlooks Outlooks Outlooks Outlooks
Named Storms Hurricanes  Major Hurricanes ACE Season Classification

For both the May (Blue) and August (Red) outlooks, large skill improvements are seen since
2008 for all predicted parameters except Season Classification,.

17



15 SEF 04 - G-12 IME - ZOo:45



Current Global SST anomalies

CDAS Sea Surface Temperature Anomaly (°C) (based on CFSR 1981-2010 Climatology)
Analysis Time: 06z Apr 27 2021
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Neutral conditions in the Pacific

Week centered on 03 FEB 2021
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Thermocline- Nina to neutral
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CFS forecasts neutral conditions continuing

@ NWS /NCEP/CPC Lost update: Tue Apr 27 2021

Initial conditions: 174pr2021 —2684prZ021

CFSv2 forecast Nino3.4 SST anomalies (K) (PDF&Spread corrected)

3
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osd El Nifho
Neutral
La Nina

-3 ——
AMJ MJJ JJA JAS ASO SON OND NDJ DJF JFM FMA Apr May MJJ JJA JAS ASO SON OND NDJ

Latest 8 farecst members —— - orecdst engemble medan
Earliest B forecst members — NCEP NSST daily analysis
Zther farecast members

(Model bias correct base period: 1998—-2010; Climatology bose period: 1982—-2010)



Anomaly (deg C)

NINO3.4 SST anomaly plume
ECMWF forecastfrom 1 Apr 2021

Maonthly mean anomalies relative to NCEP Olv2 1981-2010 climatology
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Nino models aren’t very good though!

NINO3.4 SST anomaly plume
ECMWF forecast from 1 May 2017

Maonthly mean anomalies relative to NCEP OIv2 1981-2010 climatology
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CFS ASO Seasonal Forecasts from Apr 27

CFSv2 Sea Surface Temperature Anomaly (°C) (based on 1984-2009 Model Climatology)
Awverage of last 12 forecasts (12 runs x 1 members)
Init: 06z Apr 24 2021 through 00z Apr 27 2021 valid for: Aug-Sep-Oct 2021 TROPICALTIDBITS.COM

60N &

SST (very warm

0
Atlantic, neutral ‘ 0]

ENSO)

605

CFSv2 850-200 hPa Bulk Wind Shear (kt, contour) and Anomaly (kt, shaded/vector)
Average of last 12 forecasts (12 runs x 1 members)
Init: 06z Apr 24 2021 through 00z Apr 27 2021 Valid for: Aug-Sep-Oct 2021
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Conclusions

The MJO and Kelvin waves modulate TC activity around
the globe.

El Nino/La Nina conditions are probably the most
Important factor in a seasonal forecast.

Tropical Atlantic Ocean water temperatures and multi-
decadal cycles are also very important.

There are also year-to-year differences in vertical wind
shear, sea-level pressures, and global circulation
changes during the early part of the season that may
give clues to how the rest of the season may turn out.

How active will 2021 be?
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