

TC Intensity analysis - maximum wind speed estimate

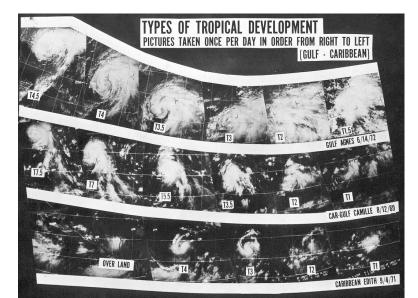
TCs fluctuate intensity

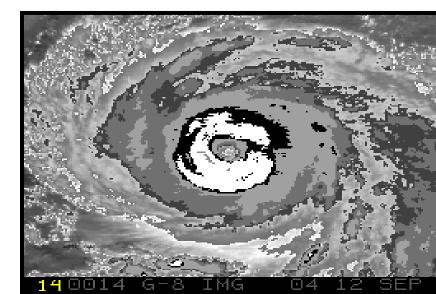
http://www.nhc.noaa.gov/pdf/TCR-AL112009 Ida.pdf

Date (Month/Day)

What is the intensity of these TCs?

10001 GMS-5 14 APR 00105 153200 06544 02602. 02


Part A. Intro to the Dvorak Technique


Empirical pattern technique to estimate intensity

Still the most robust technique available after 40+yrs

Comparison of agencies shows variations in the application of the technique (IWSAT 2011, 2016) – can we do better?

Ongoing debates regarding calibration with better data

The Dvorak Technique: pattern matching to known intensity changes

T3.5 T4.5 T1.5 T2.5 T8-HURRICANE T7-921mb TROPICAL STORM 140kts T6 -115kts T5.5 T5 970mb 90kts DAY 5 PRE STORM T4 -T4.5 987mb 65kts DAY 4 T3 -13.5 1000mb 45kts DAY 3 n T2 T2.5 1009eb DAY 2 JOkts **Tropical Cyclone** T 1 T1.5 25kts Development DAY 1 T0.5

More info:

VLAB Dvorak resources

Isobar intensity exercises

WMO/NHC Dvorak

T5.5

DAY OF

(A SATELLITE VIEW)

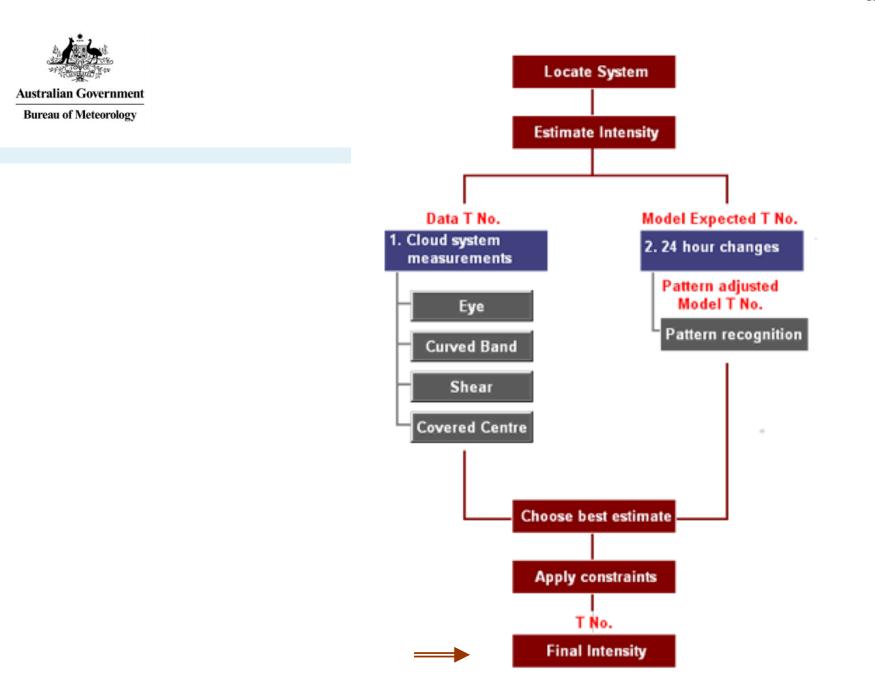
EXPECTED

INTENSITY

MAXIMUM

Sources of Dvorak information (in addition to ADT)

I. ADDITIONAL POSITIONS: NONE

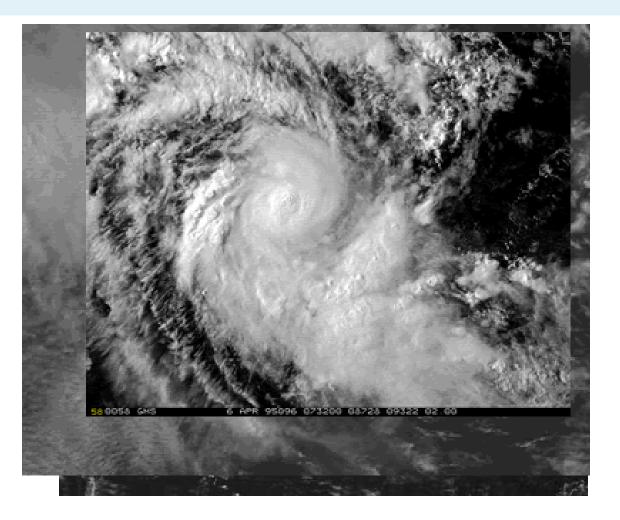

BY LG

NOAA Satellite Analysis Branch: http://www.ssd.noaa.gov/PS/TROP/tdpositions.html

JTWC: http://www.usno.navy.mil/JTWC/	TPPN10 PGTW 250249
JT VVC. <u>IIIIp.// WWW.USHO.Havy.IIII/JT VVC/</u>	A. TYPHOON 07W (NORU)
	B. 25/0230Z
Last Update Tue Jul 25 03:50:01 UTC 2017	C. 25.72N
	D. 156.99E
Users are reminded that the posted SSD position and intensity may differ from For official information:	E. THREE/HMWRI8
<u>National Hurricane Center (NHC)</u> Central Pacific Hurricane Center (CPHC)	F. T5.0/5.0/D0.5/24HRS STT: D0.5/03HRS
Joint Typhoon Warning Center in Honolulu (JTWC)	G. IR/EIR/VIS/MSI
	H. REMARKS: 11A/PBO RAGGED EYE/ANMTN. OW EYE SURROUNDED BY
Archives: (2017-2018 S-HEM Season), 2017, 2016, 2015, 2014, 2013, 2012, 2013	YIELDS AN E# AND DT (NO EYE ADJUSTMENT) OF 5.0. MET AND PT YIELD 5.0. DBO DT.

Most Recent Positions Regardless of Basin:

DATE/TIME	LAT	LON	CLASSIFICATION	STORM	LOWE
25/0230 UTC	25.7N	157.0E	T4.5/4.5	NORU West Pacifi.	
25/0230 UTC	32.8N	155.9E	T2.0/2.5	KULAP West Pacific	
25/0230 UTC	17.3N	108.1E	T3.0/3.0	SONCA West Pacific	
25/0000 UTC	14.6N	134.5W	T2.5/2.5	GREG East Pacific	
25/0000 UTC	15.1N	118.0W	T3.5/4.0	IRWIN East Pacific	

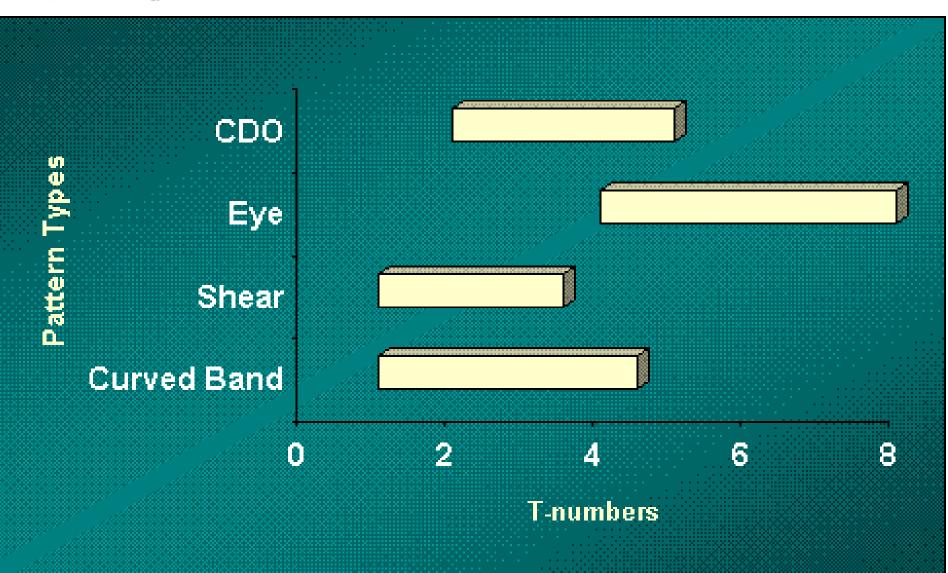

Pattern Types

•Eye

•Curved Band

•Shear

•Covered



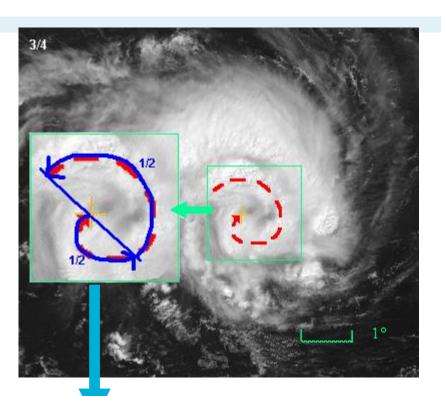
Australian Government

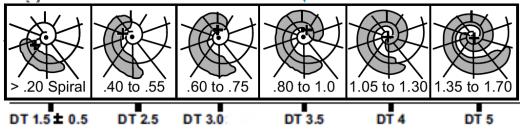
Bureau of Meteorology

Intensity schematic

STEP 2A Curved bands

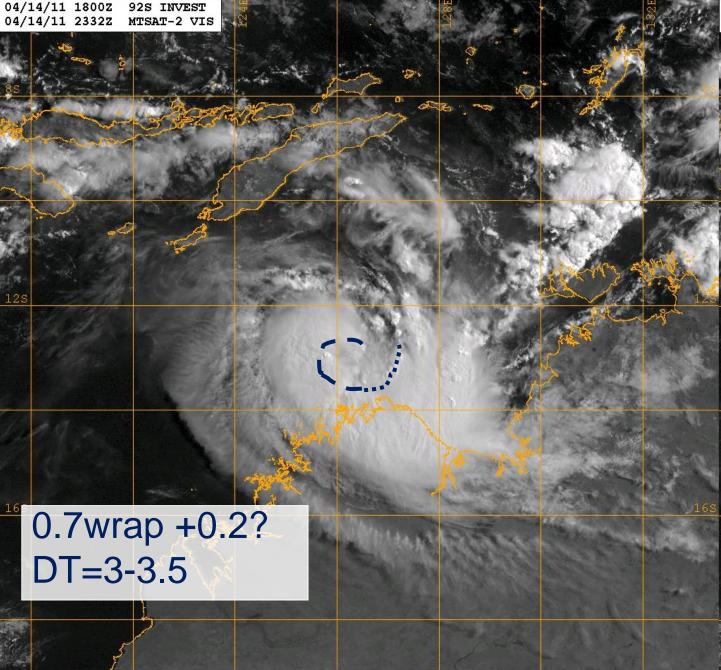
Add 0.5 to DT when band is white. For bands > 1.0 use VIS 2a or EIR 2c .60 to .75 .40 to .55 .80 to 1.0 20 Spiral .60 to .75 .80 to 1.0 1.05 to 1.30 1.35 to 1.70 .20 Spiral .40 to .55 DT 1.5 ± 0.5 DT 2.5 DT 3.0 DT 3.5 DT 4 DT 5


Method: Measure the curvature of the band


<u>Physical principle</u>: the "wrap-aroundness" or tightness of the convective bands indicates the vorticity associated with the system.

STEP 2A Curved bands

- Define axis of band (subjective): parallel the inside edge of band tightest inner curvature follow convection not cirrus small breaks allowed vis easier than ir
- Match with Log10 spiral overlay
- Measure the arc length.

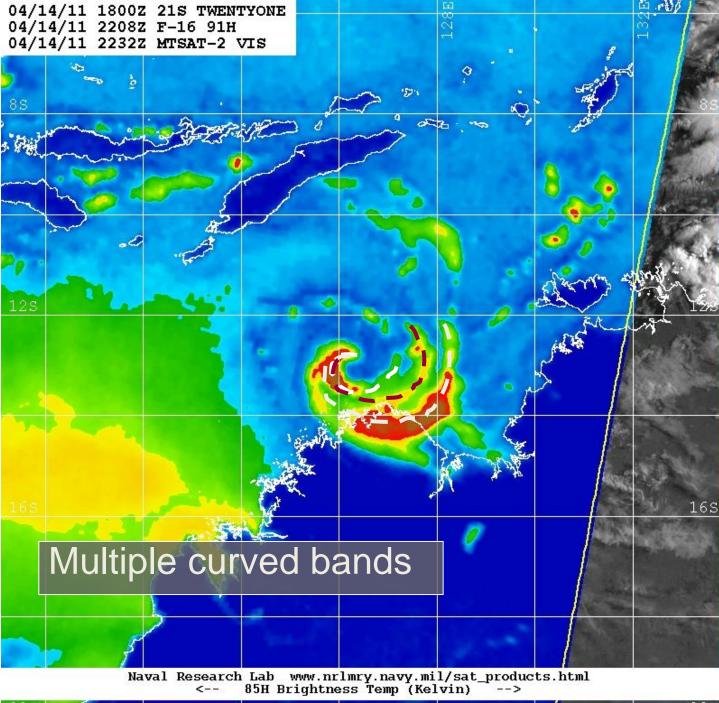


Errol

WARNING:

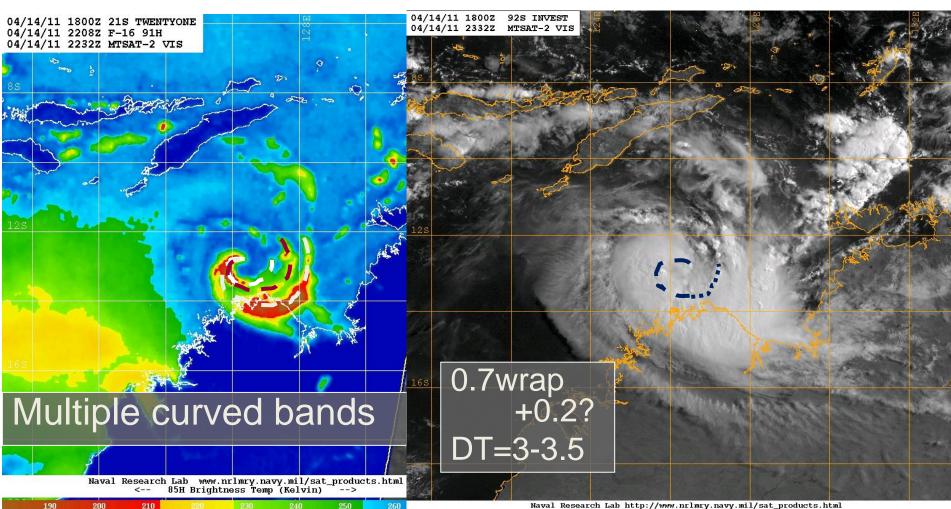
Southern

Hemisphere



Naval Research Lab http://www.nrlmry.navy.mil/sat_products.html <-- Visible (Sun elevation at center is 29 degrees) -->

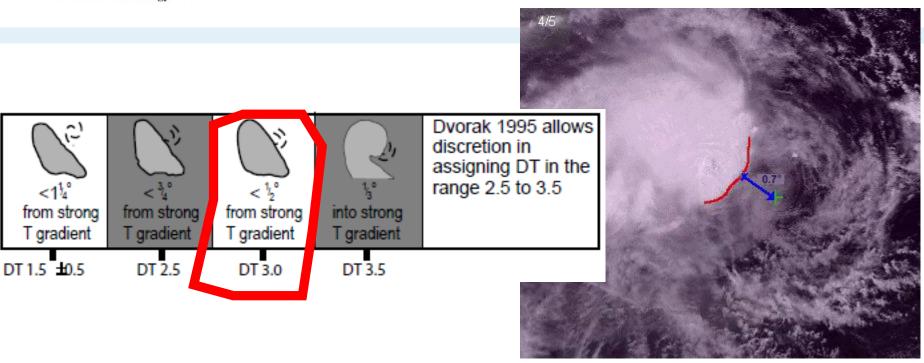
Australian Government


Bureau of Meteorology

190				250			
	and the second				and the second sec	A CONTRACT OF	

Curved Band pattern: Errol

Naval Research Lab http://www.nrlmry.navy.mil/sat_products.html Visible (Sun elevation at center is 29 degrees)


STEP 2A Curved bands

Convection is easiest to visualise in 85-91GHz microwave But can apply this to improve discerning curvature in Vis IR is typically more difficult to define curved band (SH example)

Step 2B Shear pattern

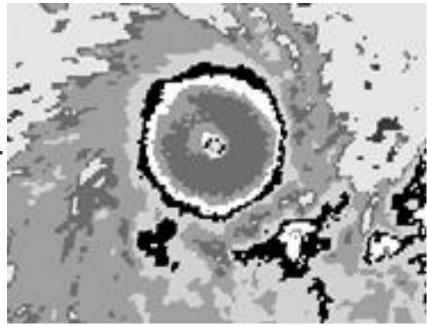
<u>Method</u>: Measure the distance form the low level centre to the edge of the "dense overcast"

Size of dense overcast>1.5°

Low level cloud definition (circular)

Distance LLCC to dense overcast or strong T gradient (IR)

Shear pattern – Time averaging Three hours later 1.5° lat DT=3.0+- 0.5 DT=1.5 +- 0.5



The enhanced IR scale (EIR)

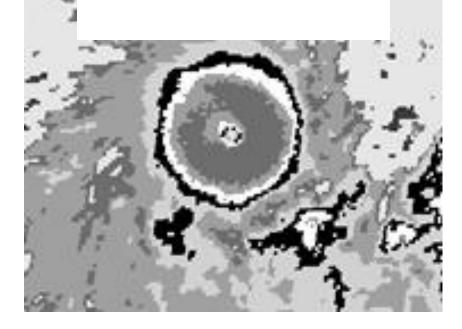
<u>Method</u>: Measure the warmest brightness temperature in the eye and the coldest surrounding temperature in the deep convection.

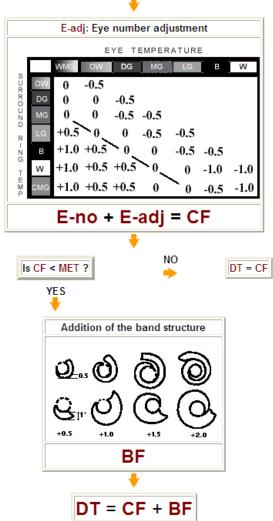
<u>Physical principle</u>: strength of the thermal contrast between the eye and the surrounding convection indicates strength of the system

24h ago was the T number > T2 ? YES

_
Step 2a
or
Step 4

NO

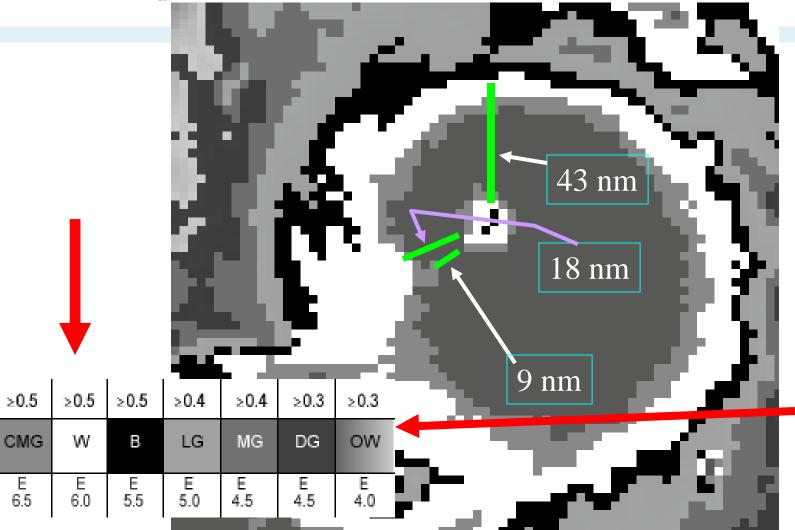



Australian Government

Bureau of Meteorology

E-no: Eye number												
Minimal width >=												
Surrounding colour	CMG	w	в	LG	MG	DG	ow					
E	6.5	6.0	5.5	5.0	4.5	4.5	4.0					

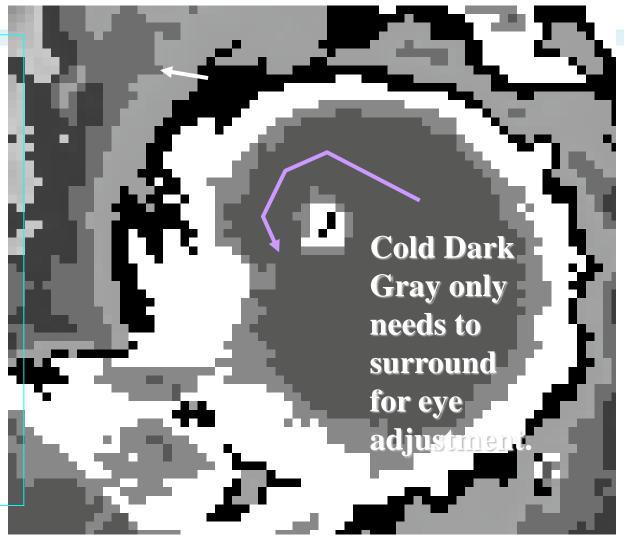
Abbrev- iation	Grey Shade BD Curve		Temperature Range ([°] K)			
WMG	Warm Medium Grey	> +9°C	> 282			
ow	Off White	+9 to -30°C	243 - 282			
DG	Dark Grey	-30 to -41°C	232 - 242			
MG	Medium Grey	-42 to -53°C	220 - 231			
LG	Light Grey	-54 to -63°C	210 - 219			
в	Black	-64 to -69°C	204 - 209			
w	White	-70 to -75°C	198 - 203			
CMG	Cold Medium Grey	-76 to -80°C	193 - 197			
CDG	Cold Dark Grey	≤ -81°C	≤192			



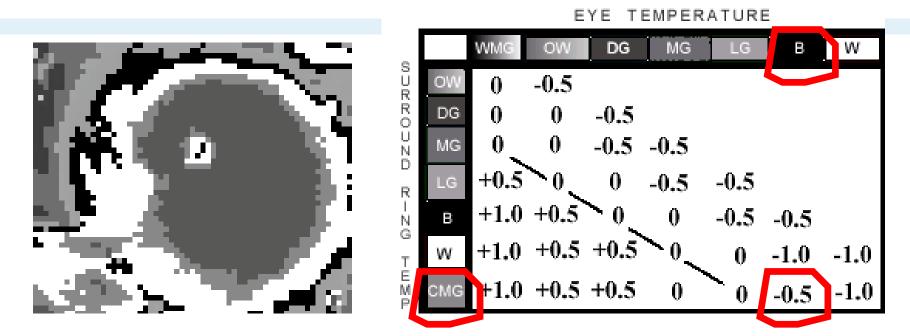
Australian Government

Bureau of Meteorology

Ε



Australian Government

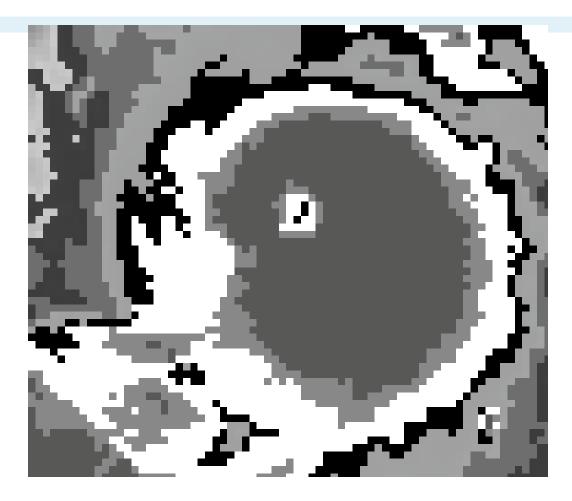

Bureau of Meteorology

Here, distance doesn't matter. Use the Cold Dark Gray (CDG) for the surrounding ring temp. Use **Black** for the eye.

Australian Government

Bureau of Meteorology

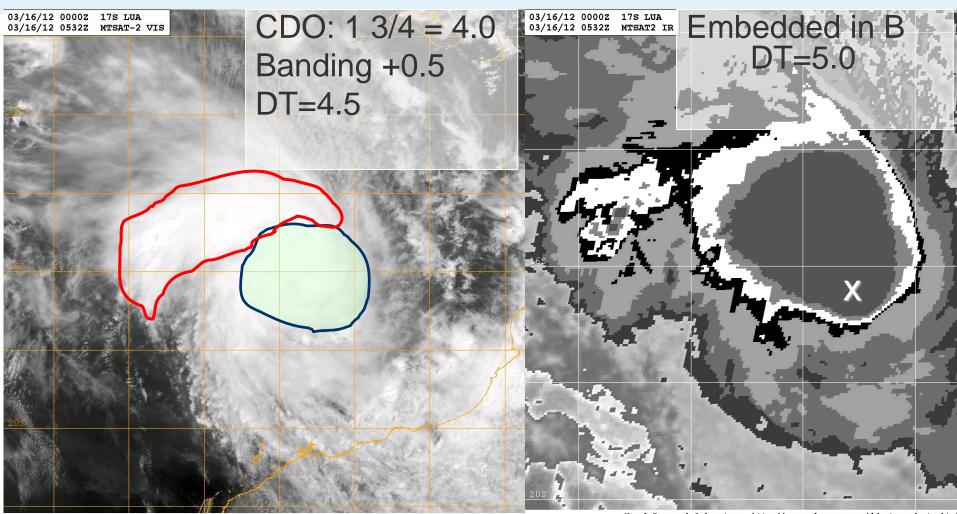
So, for a **Black** eye and **CMG** surround ring temperature, the eye adjustment is <u>-0.5</u>



E# = <u>6.0</u> Eye adj= <u>-0.5</u> (don't forget minus!)

CENTRAL FEATURE (CF):

CF = E# + Eye adj


Here, CF=6.0 +(-0.5)=<u>5.5</u>

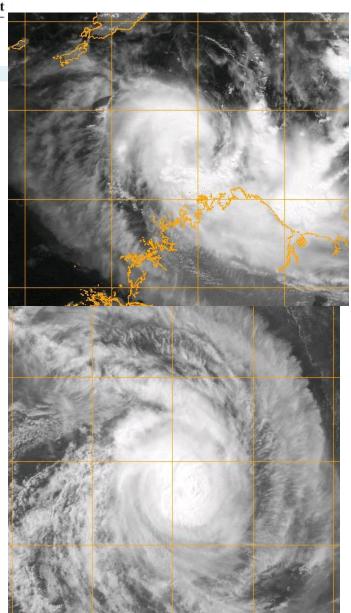
STEP 2C Covered Centre patterns

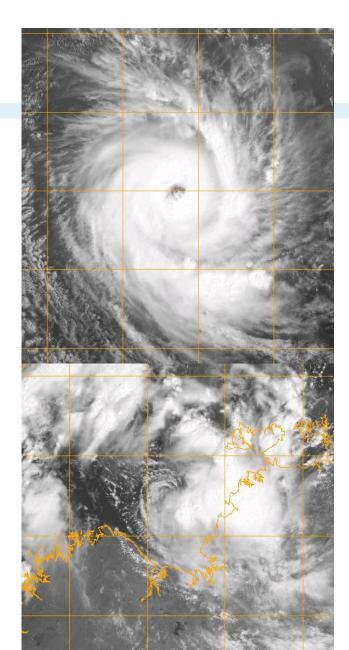
Bureau of Meteorology

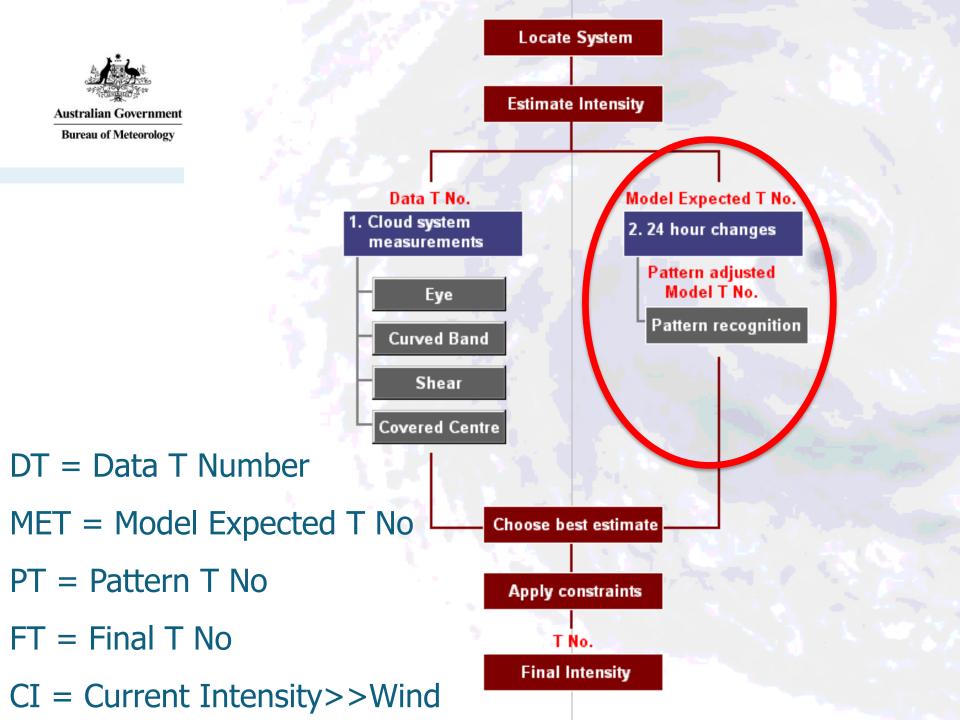
Naval Research Lab http://www.nrlmry.navy.mil/sat_products.html <-- Visible (Sun elevation at center is 65 degrees) -->

Naval Research Laboratory http://www.nrlmry.navy.mil/sat_products.html <--IR Temperature (Celsius) -->

-20


10


Review: What patterns are these?



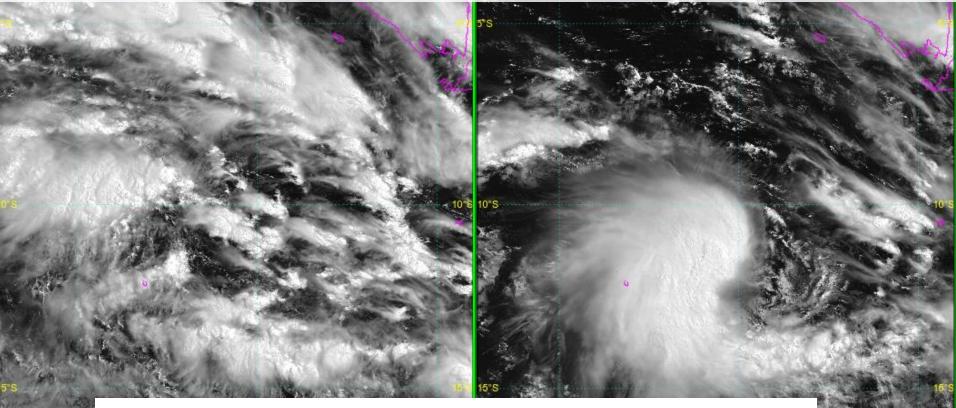
Australian Government

Bureau of Meteorology

STEPS 4-5 MET 24-hour change

- Compare current image to image 24 hours ago.
- Are cloud features better defined, same or worse.
 - If better, the trend is Developed (D)
 - If the same, the trend is Same (S)
 - If worse, the trend is Weakened (W) STEP 5 MET = Model Expected T number
 - - Slow (+.5)Adjust FT • Normal (± 1.0)

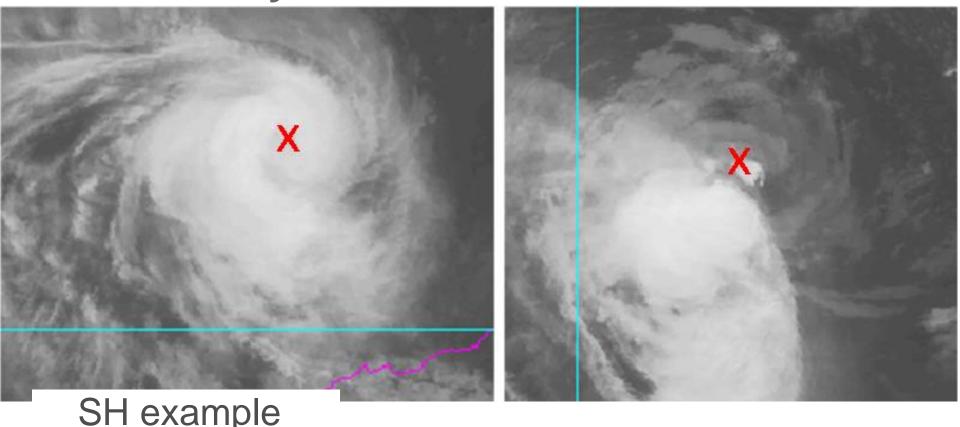
 - + Rapid (+ 1.5)
 - Assumes you are routinely doing Dvorak intensity estimates - can't do a "one-timer"!


The Dvorak 'model' 24h Trend

<u>D</u> eveloping	<u>W</u> eakening	<u>S</u> teady
Increasing convection or colder cloud tops near centre	Decreased convection or warmer cloud tops near centre	No noticeable 24h change
Increased curved banding	Decreased curve banding	Mixed - developing & weakening signs
Eye forms or becomes more distinct or warmer	Eye disappears or becomes less distinct or cooler	
Increased curvature of low clouds near centre	Decreased curvature of low clouds near centre	
Exposed centre closer to convection	Exposed centre further from convection or covered centre becomes exposed	

The Dvorak 'model' 24h comparison Developing/Steady/Weakening Rapid '+' Vs slight '-'

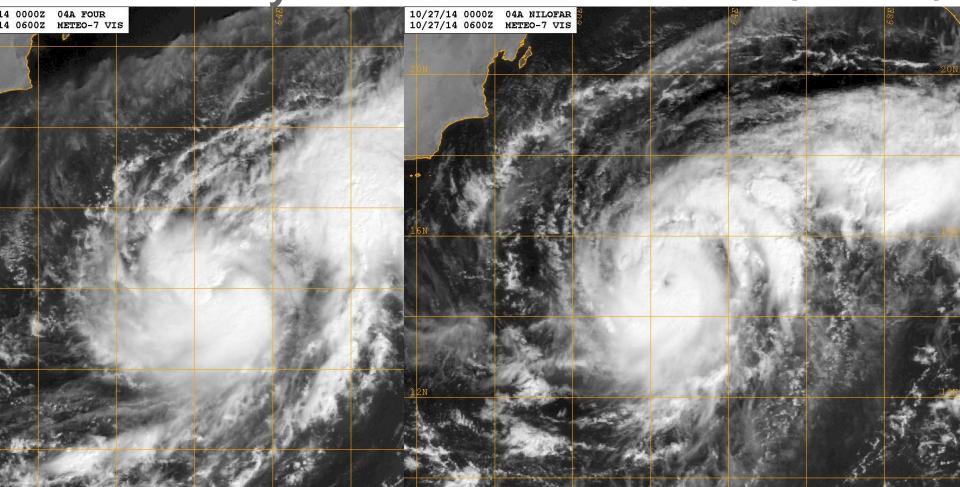
Considerations: increase and organisation of convection banding, cloud top temps; eye; centre near convection


24h Vis images at 22/03UTC left and 23/03UTC (pre-Caleb 2017)

Step 6 Pattern T no. or Adjusted MET

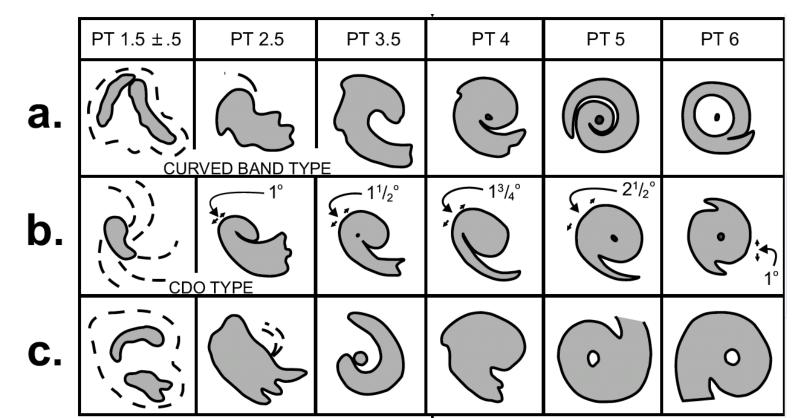
Bureau of Meteorology

24h changes what is the trend for these D/S/W +/-? **Yesterday** Current


Step 6 Pattern T no. or Adjusted MET

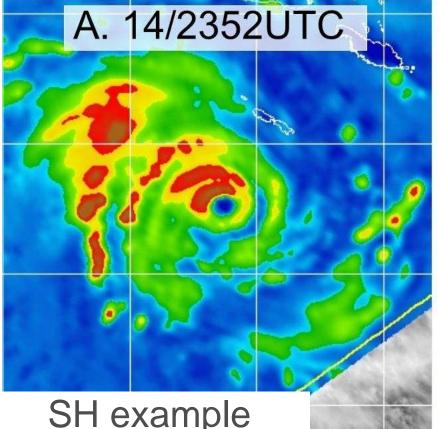
Bureau of Meteorology

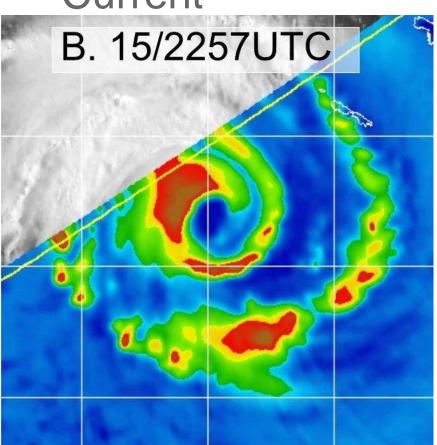
24h changes what is the trend for these D/S/W +/-?


Yesterday

Current (Nilofar)

Select the pattern in the diagram that best matches your storm picture – within one column of the MET (adjust MET by no more than 0.5 **SUBJECTIVE**





Step 6 Pattern T no. or Adjusted MET

Bureau of Meteorology Can we use microwave to help?

24h changes what is the trend for these D/S/W +/-? Yesterday Current

Steps 7 -10

STEP 7 Choosing the best estimate – the Final T-no

•Otherwise use MET (possibly adjusted by "Pattern T-no)

And then...STEP 8 Constraints RULES, RULES, RULES

STEP 9 The Current Intensity - Maximum Wind

STEP 10 Forecast Intensity (FI)

Coding FT/CI/Trend/Period eg T3.0/4.0/W1.5 24HRS

Australia uses xls version

		Ste	n 1		Ston	2A, 2B	· /	Step 20	È EVE		Step 2D	Step 2E		ompu	Itation	AVG	Stop 3	Step 4	Stop 5	Stop 6	Steps 7.8	Stop 0	Stop 1	Step 1	d
	Time	Posi		IDA/IC		d Shear Patt						Embdd Cntr.			= DT	DT	CCC			Step 0	FT	Step 3	FI		4
																						~		1	
Date		Lat. (S)	Lon. (E)		CB Help	Shear Hel	Dist.	Temp		-	Size (CF)	Temp. (CF)	CF	BF		3 hours	Use	24 hr	MET	PAT	Use Rules	CI	Numbe	r	Rei
	0430			IR				В	5.5	0*					5.5										*DG/W would give +0.5 but considered elon
19/02/15	0530	20.5	150.9	IR				В	5.5	0.5	OW/W				6.0	5.5		D+	4.5	5.0	5.0	5.0		JC	Clear eye but constrained for development 1
				Vis			0.8		5.0						5.0										
	0830			IR				W	6.0	0.5	OW/W				6.5										
	0930			IR				LG	5.0	0.5	OW/W				5.5										
	1030			IR				LG+	5.0	0.5-1	OW-CMG/W	-CMG			5.5-6										
	1130	20.8	150.5	IR				в	5.5	0.5	ow/w				6.0	6.0		D+	5.0	5.5	6.0	6.0		JC	DT 3h ave could be 5.5-6 but biased to 6 giv
	1230			IR				w	6.0		OW/W				6.5			-							just white surround
	1330			IR				Ŵ	6.0		CMG/W				7.0										Juot millo odirodina
	1430			IR				в	5.5		CMG/W				6.5										
	1530			IR				В	5.5		CMG/W				6.5										Block surround, as white is marginally lass.
	1630			IR				B	5.5		CIVIG/VV				6.5										Black surround, as white is marginally less
		21.7	150.7							1.0								D+	5.0		6.5			JC	and the state of the large state of the large DT -
	1730	21.7	150.7	IR				B	5.5	1.0	0110/0				6.5	6.5		D+	5.0	5.5	6.5	6.5		JC	consistent eye adjustment of 1 to keep DT a
	1830			IR				В	5.5		CMG/B		6.5		6.5	6.5									
	1930			IR				LG	5.0	1.0	(CMG/W)		6.0		6.0	6.3									
	2030	22.1	150.7	IR				LG	5.0		CMG/B		6.0		6.0	6.2		D+	5.0	5.5	6.0	6.5		JC	black surround now under 30nm width on e
	2130			IR				LG	5.0		CMG/B		6.0		6.0	6.0									Black surround continues to shrink
	2230			IR				LG	5.0	0.5	OW/B		5.5		5.5	5.8									
	2330	22.7	150.7	IR				LG	5.0	0.5	OW/B		5.5		5.5	5.7		D+	5.0	5.5	5.5	6.0		JC	Core of storm now entirely over land, so win
20/02/15	0030			IR				LG	5.0	0.0	DG/B		5.0		5.0	5.3									

CI to wind (to pressure)

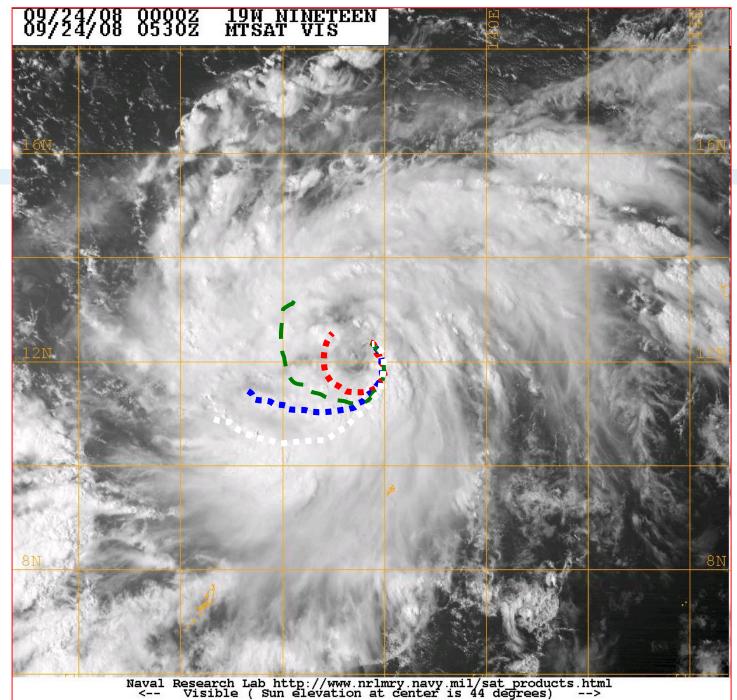
CI	10 min mean winds		mean			Comments					
1	km/h	knots	km/h	knots							
1.0	35	20	80	45							
1.5	45	25	80	45	Tropical						
2.0	45	25	80	45	Low						
2.5	55	30	80	45							
3.0	65	35	90	50		Demonian susta 00	10.4 June /h				
3.0	75	40	100	55	Category 1	3 3 3 3	-124km/h -47 knots				
3.0	85	45	120	65		Gale loice mean 34	47 KHOLS				
3.5	95	50	130	70		Destructive quete 125	164km/b				
4.0	100	55	140	75	Category 2	Destructive gusts 125-164km/l Storm force mean 48-63 knot					
4.0	110	60	155	85							
4.5	120	65	170	90							
4.5	130	70	185	100		Gusts 165-224 km/h					
4.5	140	75	195	105	Category 3	Mean 64-85 knots					
5.0	150	80	205	110		Mean of 05 knots	₹<				
5.0	155	85	220	120			IT: P				
5.5	165	90	230	125			Can				
5.5	175	95	250	135	Category 4	Gusts 225-279 km/h	e fo				
6.0	185	100	260	140	Category 4	Mean 86-107 knots	Proc				
6.0	195	105	275	150			<mark>Very Destructive</mark> gusts Hurricane force mean				
6.5	205	110	285	155			just ean				
6.5	215	115	295	160			v v				
7.0	220	120	315	170			63 63				
7.0	230	125	325	175	Category 5	Gusts >279 km/h	<mark>Very Destructive</mark> gusts >164km/h Iurricane force mean > 63 knots				
7.5	240	130	345	185	category 5	Mean ≥108 knots	ts /h				
7.5	250	135	350	190							
7.5	270	145	380	205							
8.0	280	150	390	210							

Australian Government Bureau of Meteorology

Last step to convert to wind

True or False

- 1. Curved band patterns are easier on IR imagery than Vis imagery?
- 2. Eye patterns are more accurate on EIR than on Vis imagery.
- 3. Shear patterns are appropriate for TCs for the range
 - a. 25-50kn b. 30-65kn c. 50-85kn d. 25-85kn


Where is the curved band here?

more difficult!

Multiples

Ranges

Changes from hour to hour >> loop

