Australian Government

TC rainfall forecasting

Bureau of Meteorology

Global TC Rainfall

Bureau of Meteorology

Global TC Rainfall
 \% of yearly total

Global TC Rainfall

- TC rainfall peaks when global rainfall is low
- Asymmetric-generally more rain in the Northern Hemisphere
- Global rainfall is decreasing with increasing latitude while TC rainfall is increasing
- TC contributes 10-17\% of global rain $15-30^{\circ}$ poleward from Equator (subtropics)

Frank Marks (HRD)

Percent of maximum storm total rainfall (h)
 Hours \rightarrow

Factors affecting rainfall?

- Storm track (location and translation speed)
- Storm size (positive) - the bigger the storm, the more it rains at any given spot
- Wind shear (negative) - leads to a quicker dropoff in rainfall for inland TCs
- Topography - Positive in the upslope areas, but negative past the spine of the mountains
- Nearby synoptic-scale features/Extratropical Transition
- Time of day - core rainfall overnight/ outer band rainfall during day

Rainfall - does intensity matter?

Bureau of Meteorology

CYCLONE BOBBY
Category 4
(measured on 24/02/1995)

CYCLONE STEVE
Cyclone Category 2 (27/02/2000)
Rain (24h) in 291 mm (29/02/2000)
Flood Average Recurrence Interval in about 80years

Vertical Wind Shear

Bureau of Meteorology

High wind shear - shear dominates over motion asymmetry

If the shear is strong enough all rainfall may move away from the centre

Vertical Wind Shear

Bureau of Meteorology

Low wind shear - motion dominates over shear asymmetry in outer bands

Rainfall: forecasting tools

- Climatology : general $100-200 \mathrm{~mm} /$ day + topography
- Kraft rule of thumb:
- Rainfall accumulation $(\mathrm{mm})=\mathbf{2 5 0 0} /($ translation speed in knots)
- TPC
- Rain Accumulation = (Diameter * Rain Rate) / (translation speed)
- eTrap http://www.ssd.noaa.gov/PS/TROP/etrap.html
- NWP and ensembles of NWP

TPC method

Bureau of Meteorology

$\begin{gathered}\text { RAIN } \\ \text { ACCUMULATION }\end{gathered}=\frac{\text { DIAMETER *RAIN RATE }}{\text { VELOCITY }}$

Convective Rainfall Rates
Average Climatological Rain Rate $=2 \mathrm{~mm} /$ hour

Core Rain Rate $=5$ times this Average
or
Core Rain Rate $=10 \mathrm{~mm} /$ hour

RAINFALL CALCULATION USING

UNENHANCED INFRARED IMAGERY

Storm Name: FREDERIC Date: 12 SEPT 1979

Image Date/Time Diameter of Storm in
Direction of Motion

12 / 0630	5.5	605
12 / 1200	5.5	$\mathrm{km} / \mathrm{deg}=605$
12 / 1800	4.0	deg * $110 \mathrm{~km} / \mathrm{deg}=440$
12 / 0000	4.5	deg * $110 \mathrm{~km} / \mathrm{deg}=$

Mean Diameter: $\quad \mathrm{D}=540$ km

Frederic

Forecast translation speed: $\quad v=\underline{4.0} \mathrm{deg} * 110 \mathrm{~km} / \mathrm{deg} / 18 \mathrm{hrs}=24 \mathrm{~km} / \mathrm{hr}$

Mean rainfall rate: $\quad R=\mathbf{0 . 2} \mathbf{~ c m} / \mathbf{h r}$

$$
\mathbf{D} * \mathbf{R}
$$

Rainfall Potential: $\mathbf{P}=$ \qquad
v

Core Rainfall: $\quad c=5 * P=22.5 \mathrm{~cm} \quad\left(8.9^{99}\right)$

Mean diameter in direction of motion $\mathrm{D}=540 \mathrm{~km}$
Forecast translation speed $\mathrm{V}=24 \mathrm{~km} / \mathrm{h}$
Mean rainfall rate $\mathrm{R}=2 \mathrm{~mm} / \mathrm{h}$
Rainfall potential $P=(D \times R) / V$

$$
=(540 \times 2) / 24=45 \mathrm{~mm}
$$

Core rainfall $\mathrm{C}=5 \times \mathrm{P}=\mathbf{2 2 5} \mathbf{~ m m}$
Kraft "rule of thumb" K = 2500 / 13.5 = 185 mm

Australian Government
Bureau of Meteorology

$$
\begin{aligned}
1^{\prime \prime} & =25 \mathrm{~mm} \\
10^{\prime \prime} & =250 \mathrm{~mm} \\
11^{\prime \prime} & =225 \mathrm{~mm}
\end{aligned}
$$

Picking an analog for a TC event

Bureau of Meteorology

- Size is important...look at the current rain shield and compare it to storm totals/storms from the past
- Is/was there vertical wind shear in current and past events?
- Look for storms with similar/parallel tracks
- Is topography/prism data a consideration?
- Look for nearby fronts/depth of nearby upper troughs for current and possible analogs
- Not all TC events will have a useful analog

Tropical Cyclone- eTRaP

Australian Government

Bureau of Meteorology

Ensemble Tropical Rainfall Potential (eTRaP)

The eTRaP is a simple ensemble whose members are the 6-hourly totals from the single-orbit TRaPs. More information may be found at these links: eTRaP product information and Digital eTRaP Formats. (Last Run for active storms: 2013-07-12-04Z)

Australian Government
Bureau of Meteorology

Tropical Cyclone:

Rusty eTRaP rainfall +24h total

27 FEB 13058 06: 0 RUSTY: $24 H R S$ PROB-MATCHED QPF ETRAP

Production of TC Rainfall Forecasts

- Start with model closest to consensus forecast
- Locate relevant synoptic scale boundaries/coastal front
- Use conceptual models/current structure to modify/shift QPF (quantitative precipitation forecasts)
(TRaP and recent satellite/radar imagery for current structure)
- Look at storm-relative shear/H2 winds to further shift/limit QPF
- Use climatology (r-CLIPER, TC Rainfall Climatology) to:
- Temper down forecast bias/act as a reality check
- Depict areas of terrain that could be significantly affected

Australian Government

TC rainfall forecasting - exercise

- Choose real-time case:
- Determine motion and size
- eTRaP
- NWP
- Topography/modifications (shear?)

