

Derek Wroe Hurricane Specialist Central Pacific Hurricane Center

Acknowledgements: Tim Olander, Cooperative Institute for Meteorological Satellite Studies Chris Velden, Cooperative Institute for Meteorological Satellite Studies

Advanced Dvorak Technique

- ADT is a computer based algorithm that objectively determines TC intensity using geostationary IR imagery
- ADT is patterned after the traditional Dvorak technique
 - Output is CI and T number
 - Utilizes same scene types
- Primary motivation:
 - Remove subjectivity
 - Promote uniformity
 - Subjectivity most prominent in cloud type patterning

Advanced Dvorak Technique History

- Objective Dvorak Technique (ODT), 1995
 - Analyst subjectivity could be introduced by selecting cloud pattern type and applying rules
 - Only worked on strong tropical storm or hurricane
- Automated Objective Dvorak Technique (AODT), 2001
 - Completed automated...no human interaction
 - Worked on any tropical cyclone (tropical depression and higher)
 - Added new scene types and constraints
 - Advanced Dvorak Technique, 2004
 - Automated center determination
 - Inclusion of microwave data

Advanced Dvorak Technique

- ADT differs from traditional Dvorak technique
 - Performed hourly
 - Uses time averaging of T no
 - Includes some microwave adjustments
- Employs automated center finding in stronger systems
- Relies on some inputs from NHC, JTWC, or CPHC
 - Uses center position in weaker systems and as first guess in stronger systems
 - For C/K/Z MSLP estimate: needs radius of 34 kt winds, outermost closed isobar, and radius of outermost closed isobar

ADT Increased Precision

- ADT produces CI in increments of 0.1, yielding more precise MSW
- ADT using Courtney / Knaff / Zehr approach to determine MSLP
 - Considers TC latitude, size, and environmental pressure

From Dvorak		
CI	MSW	MSLP
1.0	25	and price
1.5	25	
2.0	30	1000
2.5	35	997
3.0	45	991
3.5	55	984
4.0	65	976
4.5	77	966
5.0	90	954
5.5	102	941
6.0	115	927
6.5	127	914
7.0	140	898
7.5	155	879
8.0	170	858

ADT Performance: MSW (kt) (1999 - 2010)

- Nearing skill of subjective Dvorak
- Still struggles with weak systems

N = 289	CIMSS ADT	Dvorak
BIAS	- 2.5	- 1.9
AVG ERROR	10.9	7.7
RMSE	14.3	9.9

Validation from recon-aided Best Track

Advanced Dvorak Technique Passive Microwave Data

- Only used in developing systems
- Microwave imagery used to search for developing eye structure under dense overcast
- If thresholds are met, the Final T in the ADT history file is overridden with a 4.3 or 5.0
- All subsequent T numbers and MET in history file are altered

Advanced Dvorak Technique

CIMSS website:

ADT

<u>http://tropic.ssec.wisc.edu/</u>

Questions?

Derek Wroe derek.wroe@noaa.gov