

RADAR INPUTS TC MONITORING &

PREDICTION

B. Arul Malar Kannan Scientist ba.kannan@imd.gov.in

भारत मौसम विज्ञान विमाग INDIA METEOROLOGICAL DEPARTMENT

Discussion with WMO-ESCAP-II meet

05.04.2022

Predictability – Novelty – Vagaries

	Nomenclature	Wind
SINIPLIFIED	Low	< 17kt
swirling moist air mass	Depression	17kt – 27kt
swiring moist an mass	Deep depression	28kt – 33kt
Decembling a soiled analys	Cyclonic storm	34kt – 47kt
Resembling a colled snake	Severe cyclonic storm	48kt – 63kt
	Very severe cyclonic storm	64kt – 90kt
	Extremely severe cyclonic storm	91kt – 119kt
	Super cyclonic storm	120kt and more
	WMO/IESCAP Panel BESCAP/WMO IESCAP Panel Set 002 824 002 1202 102 102 000 IESCAP/WMO	RIMER RIMER ALL ALL ALL ALL ALL ALL ALL ALL ALL AL
Light Winds Very Strong Winds		
Transition from very strong winds to light winds at the outer edge		
Role Mechanism: CISK		-
P= f (ζ+5) (S ₂ +3) ⁻¹ E ($\partial \theta_0 / \partial p$ + 5) (RH-40)/30 Threshold 7	<u>3 x 10⁻⁸ Cal</u> ºKs	ec ⁻¹ Cm ⁻³
भारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMEN	т	<u>الله</u>

OBSERVED by Radar

System pattern/features

- Shape
- Cloud cover and type
- Spread
- Orientation
- Intensity

System Parameters

- Location
- Centre
- Eye (dia. & features)
- RMR, RMW

System Tendency & Movement

- Other Relevant Derived info.
 - Wind Fields
 - RF
 - Turbulence

Jove radar 11 March 2005 1700 UTC courtesy Australian Bureau of Meteorology

Radar observed Cyclone features

Radar observed Cyclone features

Movement prediction

\$ Squall line indicator
 \$ Squall line movement (Gust front, Bright band)
 \$ Automated track
 \$ Playback & extrapolate

Cyclone movement

Probable movement

Center identifying

Meighen's method
Logarithmic spiral
Velocity doublet
Zero isotach line
Animated Sequence

System intensification - eye reveals

RMV at the eye wall region (RMR)

- Intense TC's shall be even without an eye (Weatherford and Gray 1988).
- cyclone too close partial eye is observed sub-refraction (Raghavan etal 1980)
- The farther side is not usually seen ray attenuation
- Eye of intense TC tends to be circular, Ellipses/polygons/irregular shapes are common (Lewis and Hawkins 1982, Muramatsu 1986).
- The eye shape varies with time and also rotate around center.
- Eye distorted due to radar observational limitations, and rotation may be spurious

Fixing of centre

Meighen's method yields a different center position and a different eye size. Fixes obtained by his method gives smoother track.

Fixing of centre

Logarithmic spiral of CS reveals the system centre through spiral fit

Each organized spiral may have a different center

Cross angle is considered to be reflecting the intensity and organization of the system

 $r = A e^{\theta \tan \alpha}$

During eye formation the inner most SCS has cross angle zero

LOG SPIRAL FIX

Radar Cyclone center: 13.6325°N 81.4065°E

Center Log spiral and Meighen's

Fixing of centre

WIND FIELD

2

File : 2003121419042213,ppv	14 12 2003	Besn of origin	មណ្ឌម	DOMMYYYY)	7m e // TCJ	נז <i>בו</i> פטעז אבנ	Longrande fron	a No for "T. No T	Cantral Pressure fiPa for TE.C.PT	kgxmrum Surta ce Wind K g	Pressure Drop MPajíor "del B PT	nyada dhayri
Type : PPI(V) Range: 300.0 km	19:04:22		-		4.000		0.00		4 7 7 4			
	m/s 26.0- 30.0	808		11/12/2003	1200	4.5 6 D	90.5	15	1004	25	2	0
ONG	18.0-22.0 14.0-18.0	808		1212203	1000	оц 76	09U	1.5	10004	20	2	0
	10.0-14.0 6.0-10.0 2.0- 6.0	808		12/12/2003	1200	00	00 <u>1</u> 97 <i>6</i>	20	1004	20	2	00
200 0 30 30 5	-2.0- 2.0 -6.02.0			13/12/2003	1200	95	87.0	25	1002	35	• 6	CS
	-10.06.0 -14.010.0 -18.014.0	808		13/12/2003	1500	100	87.0	25	1002	35	6	cs
ocdp only	-22.018.0 -26.022.0	808		13/12/2003	1800	100	87 D	25	1002	35	6	cs
	-30.026.0	808		13/12/2003	2100	10.5	86.5	2.5	1000	35	6	CS
	CHENNAI Scan R : 300 km Scan Res: 0.50 km	808		14/12/2003		10.5	86D	2.5	998	35	6	cs
	Disp R : 300 km Disp Res: 0.674 km PW : Long	808		11/12/2003	0300	110	85D	зд	998	45	10	CS
	PRF: 500 / 375 AS : 6.00 deg/s TS : 50	808		1#12/2003	0600	110	85D	зд	996	45	10	CS
	RS : 2 CC : Doppler 5 SQI: 0.40	808		11/12/2003	0900	11.5	84.5	зд	994	45	10	CS
• TVL 0HDS 100 200	CSR: 2.0 dB LOG: 2.0 dB AZ : 0.0-359.0	808		11/12/2003	1200	120	83.5	3.5	992	55	14	SCS
	EL: 0.7 deg	808		11/12/2003	1500	125	83D	3.5	992	55	14	SCS
	by AMS-Gematronik	808		11/12/2003	1800	128	82.5	3.5	992	55	14	scs
		808		11/12/2003	2100	13.4	822	3.5	992	55	14	scs
		808		15/12/2003		13.8	81.7	3.5	992	55	14	SCS
oppc		808		15/12/2003	0300	140	81.5	3.5	992	55	14	SCS
oSIM OCDL		808		15/12/2003	0600	14.3	81.5	3.5	992	55	14	SCS
		808		15/12/2003	0900	150	810	3.5	992	55	14	SCS
		808		15/12/2003	1200	15.5	810	35	990	55	14	scs
		808		15/12/2003	1500	15.0	о1Ц 84 П	35	992	55	14	sus
otrp		000		INTZZEUJ DOGTINEORIJ		101	0111 0111	35	992 UD MICH3			aca
		ROB		15(12(2003	2100	165	100 ANN - 100	, UNU 1	((0EK 10 (CO.
		BOB		16/12/2003		17.0	810	, ,	, ,	, ,	, ,	CS .
		BOB		16/12/2003	0.300	17.0	810	;	,	,	,	nn
		808		16/12/2003	0600	17.5	815	,	,	,	,	D
		808		16/12/2003	1200	17.5	81.5	1	1	1	1	D

Movement Prediction and center fixing

Simulation is for idealised vortex. Generally vortex asymmetric and eye wall incomplete. Localised shear zone confuses while looking for the couplet

PPI(V) & VVP

WIND ANALYSIS

Phailin (Oct 2013)

Eye wall height about 13 km , eye seen at around 490km

Doppler Velocities

Wind Analysis

Assymetric Vortex - Movement

Fixing of centre

CENTRE VARIATIONS

CENTRE VARIATIONS

Max-Z & 3DS

TENDENCY

Useful Products (PCAPPI)

Useful Products (VVP)

VVP & PPV

CKKL SO' E

81° E

82° E

FCST (TRACK)

Severe Weather Index

[Data Value: 42.50 dBZ] [Lon-Lat: 81.066° E; 13.159° N] [Ground Height: 0 m] [Angle: 83.7°] [Dist from Radar: 84.7 km]

Storm Structure Analysis

Limitations & overcoming

Type of Radar Anomalous propagation Signal interference Clutter mitigation Atmospheric Attenuation Earth curvature Nyquist Velocity & (Doppler) dilemma ***Beam width resolutions**

TYPE OF RADAR Sensitivity Issues

With increased interaction/ influence of atmosphere at higher frequencies, sensitivity increases provided all other factors are identical (Power transmitted, beam width, scattering mechanism etc.)

Sensitivity of radar bands in decreasing trend:

W, V, Ka, K, Ku, X, C, S, L

100

10

भारत मौसम विज्ञान विमाग INDIA METEOROLOGICAL DEPARTMENT

2001:05:25

PROPAGATION

+2 $+2$ $-2h/D$	with P =kP where k=	$\begin{bmatrix} R & dn \\ 1 & 1 \end{bmatrix}$
$\phi_{h}^{-} - \phi_{0}^{-} - 2n/R_{e}$	with R _e -kR where k-	$1 + n_{a}dh$

К	RI gradient	Total Ray curvature	Virtual earth	Atmospheric refraction
<1	dN/dh>0	Moves up	More Convex	Sub refraction
1	dN/dh=0	Moves up	Actual	Sub refraction
>1	dN/dh<0	Moves up/down	Convex/flat/concave	Sub/normal/Super
	0>dN/dh>-39	Moves up	Less Convex	Sub refraction
4/3	-39	Moves up	Less Convex	Normal refraction
	-39>dN/dh>-157	Moves down	Less convex	Super refraction
	-157	Moves down	Flat	Super refraction
	<-157	Down	Concave	Super refraction (Ductin

 $h = \sqrt{r^2 + R_e^2 + 2 r R_e sin\varphi} - R_e + H_0$ (also h=rsin\varphi+r^2/2R_e+h_t)

 $R_{\text{horizon}} = \sqrt{2R_e h_t} + \sqrt{2R_e h_r}$

test1.tif

Radar Limitations and Overcoming Curvature

Curvature Effects center

Radar Limitations and Overcoming

Attenuation

Attenuation Example R(one-way) = 5 km, rainfall rate = 4 mm/hr

भारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

Attenuation Artifacts

Rayleigh scatter Radars Attenuation in clear air

Radar limitation overcoming FOLDING (RANGE)

2*PRF **Range folded** actual File : SMR_2004_5_4_2_29_41.dat Type : PPI Range : 153 km SHNR_2004_5_4_2_27_24.dot PP1 153 km 004-05-04 004:05:04 127:24 92:29:41 SHP-SHM 153 kr 0.30 km Scan Res Scan Res Disp Rang Disp Res 0.30 k Dinp Res. 0.30 km Micro Se PH Bicro PRFL PRFL 100 PRFH PRFH Ant Spi Gates 12.00 dea/s that Samuel 12.00 den/s Gates 1824 512 DTP DTP 16 ClutterFilter ClutterFilter STC ON STC DFF OFT Stellidth 210 210

Radar limitation overcoming FOLDING (VELOCITY) $V_N = \frac{\lambda}{4} \text{PRF}$

Velocity folded

FOLDING

File : 2003121419131427.ppv 14.12.2003 Type : PPI(V) 19:13:14 Range: 250.0 km m∕s 13.0- 15.0 11.0- 13.0 6CDP ONLE ş CHENNAI OGD OPIÍC. &CDL O\$LM. ωК

Rainbow (C) by AMS-Gematronik

(i) DWR Chennai operational wavelength is 10.4348cm; The requirement is to get range as well as velocity till around 475km. To attain this unambiguous range of 475 the PRFh is 315Hz.
 Using Maximum unfolding through Dual PRF (ie 4:5) the PRF combination PRFh:PRFl :: 315:252 has been arrived.

This would give an unambiguous velocity of 32.87m/s. As this ratio of PRF has lot of jitters, IIR clutter filtering has been kept off as would lead to losing of good valid signature, further signal qualifiers of SQI reduced to 0.1, LOG 1.5. Further the scan angles have been chosen to be -0.4, 0.2 & 1 degree that the volume resolves upto 15km height. Beam height diagram placed

NIVAR – Abnormal Features

Multiple Eye....[Earlier reported Mukherjee etal June 1976]

Cyclone Morphology

MIMIC: Morphed Integrated

EV/R Chellinai Reflectivity [Time: fiolograation [2] 201125044742 [

NIVAR

HWSR - Wind plot of Cuddalore (Between 2020-11-25 18:30:00 and 2020-11-25 19:30:00)

This material is provided as a part of the Training/discussion, and not for public distribution or commercial use

Most of the imageries incorporated, are owned by India Meteorological Department, Gol for use of those images, prior permission of IMD shall be obtained

Credits to:

- 1. India Meteorological Department (IMD), MoES, Government of India
- 2. BMI (COX bazar data of SIDR)
- 3. COMET training module
- 4. NOAA, NASA
- 5. Web resources

Of course, my beloved family too... that silently toils at the background in keeping my spirits alive

Books for a better understanding of weather radars & its applications :

6. Radar Meteorology by S. Raghavan, Kluwer Academic Publishers, Netherlands

7. Radar for Meteorologists by Ronald E. Rinehart, Rinehart Publications, USA

- 8. Polarimetric Doppler weather radar Bringi & Chandrasekar, Cam. UP, USA
- 9. Doppler Radar and Weather Observations-Doviak and Zrnic , Academic Pr,

