

NCMRWF deterministic models for TC prediction

DR. RAGHAVENDRA ASHRIT, SC-F, NCMRWF

Contents

- Introduction
- NCMRWF Modelling & DA Systems
 - Case of ESCS 'Foni'
 - ► Track Forecast Verification
 - Intensity Forecast Verification
 - Severe Weather Indices
 - Case of SuCS 'Amphan'
 - ► Track Forecast Verification
 - Intensity Forecast Verification

Atmospheric Scales of Motion

Space and time-scales of dynamical atmospheric processes. SOURCE: UCAR

NCMRWF Models

	Model	Application & Domain	Resolution	Forecasts	
NCUM		Global NWP Forecasts	N1024L70 (12km horizontal resolution with 70 vertical levels)	00UTC: Day0 to Day10 12UTC: Day0 to Day 10	
	NEPS	Global Ensemble Prediction	N1024L70 (12 km horizontal resolution; Control+ 11 member)	00UTC: Day0 to Day10 12UTC: Day0 to Day10	
	NCUM-R	Regional high resolution over Indian Region (5-40N and 65-100E)	4 km resolution Explicit convection	00UTC: Day0 to Day3	
	NCUM- 1.5km	Regional convective scale modeling	1.5 km (experimental)	00UTC: Day0 to Day3 (experimental/hindcast)	
	NCUM- Coupled	Global Seamless Prediction (Days to Season)	NCUM Atmospheric Model (1.875° x 1.25°; L85), Ocean Model NEMO (1° x 1°), Sea Ice Model (CICE) and OASIS coupler	(experimental/hindcast)	

NCMRWF Models

Improved use of Data in Recent years

Hybrid 4D-Var Data Assimilation

Observation Type	Observation Description
AHIClear	Advanced Himawari Imager radiances from Himawari-8
Aircraft	Upper-air wind and temperature from aircraft
AIRS	Atmospheric Infrared Sounder of AQUA
AMSR	Radiances from AMSR-2 onboard GCOM satellite
ATOVS	AMSU-A, AMSU-B/MHS, HIRS from NOAA-18 &19, MetOp-A&B
ATMS	Advanced Technology Microwave Sounder in NPP satellite
CrIS	Cross-track Infrared Sensor observations in NPP satellite
GOESClear	Cloud clear Imager radiances from GOES
GPSRO	Global Positioning System Radio Occultation observations from various satellites
GroundGPS	Ground based GPS observations from various locations
IASI	Infrared Atmopheric Sounding Interferometer from MetOp-A&B
SAPHIR	SAPHIR microwave radiances from Megha-Tropiques
Satwind	Atmospheric Motion Vectors from various geostationary and polar orbiting satellites
Scatwind	Advanced Scattrometer in MetOp-A & B
SEVIRIClear	Cloud clear observations from SEVIRI of METEOSAT 11
Condo	Radiosonde observations, upper-air wind profile from pilot balloons, wind profiles,
Sonde	VAD wind observation from Indian DWR
Surface	Surface observantions from Land and Ocean
SSMIS	SSMIS Radiances

•The NCUM-G Hybrid 4D-Var assimilation system combines the flow dependent errors calculated from the Ensemble Transform Kalman Filter (ETKF) based NEPS forecasts with the climatological background errors.

•The hybrid approach is scientifically attractive as it elegantly combines the benefits of ensemble data assimilation with the benefits of 4D-Var within a single data assimilation system (Barker, 2011).

Reduced Errors during NIO TC Season

•Forecast verification of track & intensity are based on the IMD's Best Track data

Track Forecast Verification
DPE, ATE and CTE
Intensity
MinSLP and MaxWind

For realistic location and the magnitude of the low pressure in the model analysis the location and the minimum low pressure associated with the tropical cyclone is adjusted by assimilating the estimated surface pressure information from the Tropical Cyclone Vital (TC Vital) reports since October 2018.

Location of pressure from TC vitals assimilated in the NCUM-G during AMPHAN cyclone

ESCS 'Fani'

FANI CYCLONE EYE FOOTPRINTS IN THE NCUM FOERCAST METEOGRAM (IC:00Z 30 APR 2019)

BHUBANESHWAR)

NCMRW

(KOLKATA

*But TC Fani dissipated fast after landfall and hence crossed to West Bengal as only a depres

NCUM Analysis

Accurate representation of the cyclone location in the initial Analysis

Winds at 850 hPa - Forecasts

IC: 00Z 29 APR 2019

IC: 00Z 30 APR 2019

Observed and forecast cyclone centre

NCMRW

Mean Sea Level Pressure(hPa) analyses from 20190426 to 20190504

990 992.5 995 997.5 1000 1002.5 1005 1007.5 1010

NCUM Analysis

Accurate representation of the cyclone location in the initial Analysis

d)

20N

10N

0

75E

80E

990

IC: 00Z 29 APR 2019

998

996

1000 1002 1004 1006 1008 1010

IC: 00Z 30 APR 2019

b)

20N

10N

75E

80E

85E

90E

1000 1002 1004 1006 1008 1010

Analysis

a)

20N

10N

0

75E

80E

85E

90E

994

992

990

996 998

Mean Sea Level Pressure(hPa) analysis and fcst based on IC:2019043000 UTC

20190501

20190502

C)

20N

10N ·

75E

80E

85E

90E

90E

Observed and forecast cyclone centre

TC FANI – Observed and predictedtrackstracksNCUM-G (5 days fcst)NCUM-R (3 days fcst)

NCMRW

Forecast Track Errors for ESCS 'Fani'

Table	1.	Forecast	Track	Errors fo	or ESCS	Fani	from	00Z26Apr	-12Z04May
2019.								_	-

[ACCESS model tracks are available from 12Z27Apr-00Z04May2019]

	0	24	48	72	96	120
NCUM	66	83	160	217	248	320
No. of cases	15	15	13	12	11	9
NEPS	73	95	157	205	238	280
No. of cases	15	15	13	12	10	8
UMREG	68	100	129	179		
No. of cases	15	16	15	13		
ACCESS	34	86	144	151		
No. of cases	14	13	11	9		

Forecast Track Errors for ESCS 'Fani'

No. of cases

ACCESS

No. of cases

- Initial Position Errors (IPE):
 - Lowest mean IPE ACCESS (34km)
 - [min 10.8km on 00z01May and max 71km on 00Z27Apr]
 - NCUM and UMReg are second best with 66 and 68km IPE
 - Highest mean IPE NEPS (mean) (73km)
 - [min 16.8km on 00z03May and max 147km on 00Z27Apr]

Table 1. Forecast Track Errors for ESCS Fani from 00Z26Apr-12Z04May 2019. [ACCESS model tracks are available from 12Z27Apr-00Z04May2019] NCUM No. of cases NEPS *No. of cases* UMREG

Forecast Track Errors for ESCS 'Fani'

- Direct Position Error (DPE):
 - Lowest Day-1 DPE in NCUM (83km) and ACCESS(86km)
 - NCUM Day-1 DPE 14 of 15 values <85km except on 00z30Apr (123km)
 - ACCESS Day-1 DPE 7 of 13 values >100km
 - Lowest Day-2 DPE in UMReg (129km)
 - UMReg Day-2 DPE 5 of 15 values <100km and 5 of 15 values >150km
 - Lowest Day-3 DPE in ACCESS (151km)
 - ACCESS Day-3 DPE 6 of the 9 values >150km

Table 1. Forecast Track Errors for ESCS Fani from 00Z26Apr-12Z04May 2019. [ACCESS model tracks are available from 12Z27Apr-00Z04May2019]

	0	24	48	72	96	120
NCUM	66	83	160	217	248	320
No. of cases	15	15	13	12	11	9
NEPS	73	95	157	205	238	280
No. of cases	15	15	13	12	10	8
UMREG	68	100	129	179		
No. of cases	15	16	15	13		
ACCESS	34	86	144	151		
No. of cases	14	13	11	9		

- ATE <50km and CTE ~ 50km in the initial position.
- Error contribution in DPE mainly due to CTE

NCMRW

Max Wind: Underestim ated at higher lead time **Overestima** ted in **UMReg**

MinSLP: Accurately predicted in NCUM and **NEPS Underestima** ted in ACCESS **Overestimat** ed in UMReg

00UTC 28th Apr

20190502

20190501

20190503

20190504

NCUM

ACCESS

20190427

0428

20190429

501

--- NEPS

950

940

930

920

20190426

12UTC 28th Apr

MSW comparison during 12Z28April2019 to 04May2019 for VSCS FANI

140

120

- - IMD

00UTC 29th Apr

12UTC 29th Apr

Max Wind: Underestim ated at higher lead time Overestima ted in UMReg

MinSLP: Accurately predicted in NCUM and NEPS Peak overestimate d in NCUM Underestima ted in

00UTC 30th Apr 12UTC 30th Apr

MinSLP: underestimat ed in all lead times Overestimat ed at higher lead times

SuCS 'Amphan'

NCMRUA NCMRUA

SCMR MARK

NCMRW.

Forecast track errors before the naming of the cyclone (13-15 May 2020) and after the naming of cyclone (16-21 May2020)

Forecasts Based on 13-21 May 2020													
Fcst Hour	0	12	24	36	48	60	72	84	96	108	120		
NUCM-G	43	65	68	94	112	148	183	205	210	227	250		
NCUM-R	48	72	78	86	99	118	153						
	Forecasts Based on 13-15 May 2020												
NUCM-G		144	94	70	86	81	140	146	139	159	171		
NCUM-R		80	63	59	93	103	138						
			Forec	asts ba	ased on 16-2	21May	2020						
NUCM-G	43	58	62	98	124	187	237	294	326	429			
NCUM-R	48	71	81	95	102	131	169						

NCMRW

Improved Track & Intensity in NCUM-G Forecasts in recent years

Table 4. List of tropical cyclones studied and their details.

NCMUG-V4

	Sl			Basin of		MSW		Life	
	No.	Name	Dates	formation	Classification	(kt)	MinSLP(hPa)	(days)	Landfall
	1	Chapala	28 Oct-04 Nov 2015	AS	ESCS	115	940	8	Yes
	2	Megh	05-10 Nov 2015	AS	ESCS	95	964	6	Yes
22 TCs formed	3	Roanu	17-22 May 2016	BoB	CS	45	983	6	Yes
aver NOI during	4	Kyant	21-28 Oct 2016	BoB	CS	40	996	8	No
	5	Nada	29 Nov-2 Dec 2016	BoB	CS	40	1000	4	Yes
2015-2019	6	Vardah	6-13 Dec 2016	BoB	VSCS	70	975	8	Yes
	7	Maarutha	15-17 April 2017	BoB	CS	40	996	3	Yes
	8	Mora	28-31 May 2017	BoB	SCS	60	978	4	Yes
	9	Ockhi	29 Nov-6 Dec 2017	BoB	VSCS	85	976	8	No
	10	– Mekunu	21-27 May 2018	AS	ESCS	95	960	7	Yes
	11	Daye	19-22 Sep 2018	BoB	CS	35	992	9	Yes
NCMUG-V5	12	Luban	6-15 Oct 2018	AS	VSCS	75	978	10	Yes
	13	Titli	8-12 Oct 2018	BoB	VSCS	80	972	5	Yes
	14	Gaja	10-19 Nov 2018	BoB	VSCS	70	976	10	Yes
	15	Phethai	13-18 Dec 2018	BoB	SCS	55	992	6	No
	16	Fani	26 Apr-04 May	BoB	ESCS	115	932	9	Yes
			2019						
	17	Vayu	10-17 Jun 2019	AS	VSCS	80	970	8	No
	18	Hikaa	22-25 Sep 2019	AS	VSCS	75	978	4	Yes
	19	Kyarr	24 Oct-02 Nov 2019	AS	SuCS	130	922	10	No
	20	Maha	30 Oct-07 Nov 2019	AS	ESCS	100	956	9	No
	21	Bulbul	05-11 Nov 2019	BoB	VSCS	75	976	7	Yes
	22	– Pawan	02-07 Dec 2019	AS	\mathbf{CS}	40	998	6	Yes

Figure 2. Best track plot of tropical cyclones as obtained from IMD for (a) 2015-May 2018 (b) June 2018-2019.

Improved Skill of NCMRWF Unified Model (NCUM-G) in forecasting tropical cyclones over NIO during 2015–2019 (Kumar et al 2022)

Improved forecast skill of the initial position of TCs with decrease in DPE by 44%.

Reduction in DPE at 48, 72, 96, 120 h are 34, 25, 27, 19, 26%.

Overall V5 shows gain in skill by approximately 24 h (1-day).

The improvement is majorly contributed by ATE

CMRI

Improved Skill of NCMRWF Unified Model (NCUM-G) in forecasting tropical cyclones over NIO during 2015-2019 (Kumar et al 2022)

Comparison of mean landfall error from NCUM-G: V4 and NCUM-G: V5 (a) in landfall position (km) and percentage improvement (b) landfall time (h)

Comparison of errors in model (NCUM-G: V4 and V5) predicted mean intensity in terms of maximum sustained wind speed (MSWE) Model show s the improvement at all lead times but more at shorter lead times

Comparison of DPE from different NWP models with IMD official forecast error in 2019 At higher lead times (96-h and above) NCUM-G and ECMWF show lower DPEs than IMD

Summary

- NCMRWF Modelling & DA Systems
 - Improved representation of initial position and intensity of TC
 - Case of ESCS 'Foni'
 - Track Forecast Verification
 - Intensity Forecast Verification
 - Severe Weather Indices
 - Case of SuCS 'Amphan'
 - Track Forecast Verification
 - Intensity Forecast Verification
 - Reduced initial position errors in NCUMG-V5
 - Significant reduction in the DPE at all lead times up to 120 h
 - Improved prediction of landfall time and position in NCUM-V5
 - Improved prediction of intensity in NCUM-V5

