

Cyclogenesis Monitoring & Forecast by RSMC New Delhi

Monica Sharma Scientist-D INDIA METEOROLOGICAL DEPARTMENT NEW DELHI-110003 moniimd@gmail.com

Evolution of Cyclonic disturbances Over the Indian Seas

Low pressure system	Maximum sustained winds			
Low	< 17 knots	< 31 kmph		
Depression	17 – 27 kts	31 – 51 kmph		
Deep Depression	28 – 33 kts	52 – 62 kmph		
Cyclone	34 – 47 kts	63 – 87 kmph		
Severe Cyclone	48 – 63 kts	88 – 117 kmph		
Very Severe Cyclone	64 – 89 kts	118 – 164 kmph		
Extremely Severe Cyclonic Storm	90-119 kts	165 – 221 kmph		
Super Cyclone	120 kts & above	222 kmph & above		
System	Pressure deficit (hPa) at the cent	re		
Low		1.0		
Depression	1.0	- 3.0		
Deep Depression	3.0	- 4.5		
Cyclone	4.5-8.5			
Severe Cyclone	8.5-15.5			
Very Severe Cyclone	15.5-65.6			
Super Cyclone	>65.6			
भारत मासम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT				

Cyclone Forecasting and Warning Process

- 15 days Extended Range Outlook for cyclogenesis issued every Thursday
- * 5 days Probabilistic Cyclogenesis Forecast issued daily
- Track, intensity and structure forecast upto 5 days issued every six hours from depression stage and every three hrs during cyclone stage
- Impact based heavy rainfall, wind, wave & storm surge warning for 5 days with advice for action issued every 6 or 3 hrs
- Hourly update 12 hrs prior to landfall
- Four stage cyclone warning
- Sea area bulletin
- Coastal weather bulletin
- Bulletins for Indian navy
- Fisheries warnings
- Port warnings
- Aviation warning
- Bulletin-for AIR/TV/ press
- Warnings for registered users.

- Pre-cyclone watch (Yellow)–72 hrs in advance
- Cyclone Alert (Orange)-48 hrs in advance Reproduction of the Production of the Pr

Warning Products

- Cyclone warning (Red)–24 hrs in advance.
- Post-Landfall Outlook- 12 hrs before landfall
- De-Warning- When Cyclone weakens.

Genesis Forecast

Utility: Suitable for forecasters to improve monitoring & forecasting in medium range based on extended range prediction. Help in planning & preparedness with longer lead period.

Extended Range Forecast (Consensus approach)

Extended Range Forecast (Consensus approach)

- (*i*) Madden Jullian Oscillation (MJO) phase and amplitude following Mohapatra and Adhikary (2011)
- (*ii*) The mean sea level pressure (MSLP) and 10 m wind fields from various global models including IMD-GFS, NCEP-GFS, NCUM, ECMWF, IMD-GFS, NEPS following the criteria for genesis (IMD, 2013)
- (*iii*) IITM/IMD CFSv-2 cyclogenesis probability, MSLP & 850 hpa winds forecast for 4 weeks (Pattanaik and Mohapatra, 2016)
- (*iv*) IMD's Genesis Potential Parameter (Kotal and Bhattacharya, 2011)
- (v) 30 days cyclogenesis forecast from (<u>http://www.atmos.albany.edu/facstaff/roundy/tcforecast/tcforecast.html</u>)
- (*vi*) Tropical cyclone formation product probability by RAMMB, CIRA for next 48 hours (<u>http://rammb.cira.colostate.edu/projects/gparm/</u>)
- (vii) Global Tropics Hazards and Benefits Outlook by NOAA for next two weeks (http://www.cpc.ncep.noaa. gov/products/precip/CWlink/ghazards/)
- (viii) NINO 3.4 values for El-Nino or La-Nina conditions and dipole index for Indian Ocean Dipole (IOD) from Bureau of Meteorology (<u>www.bom.gov.au</u>)

ESCS TAUKTAE

Extended range outlook dated 6th May indicated development of depression over southeast Arabian Sea and adjoining Lakshdweep during 14th-16th May

Depression formed over Lakshdweep on 14th May

Extended range outlook dated 13th May indicated HIGH probability of cyclogenesis and movement of system towards Gujarat coast parallel to West coast of India during 14-20 May.

Tauktae moved parallel to West coast of India and crossed south Gujarat coast on 18th May

GENESIS PROBABILITY: SHORT TO MEDIUM RANGE FORECAST

TYPICAL EXAMPLE OF MEDIUM RANGE FORECAST

World Meteorological Organization

REGIONAL SPECIALISED METEOROLOGICAL CENTRE-TROPICAL CYCLONES, NEW DELHI TROPICAL WEATHER OUTLOOK

DEMS-RSMC TROPICAL CYCLONES NEW DELHI DATED 10.05.2021

TROPICAL WEATHER OUTLOOK FOR NORTH INDIAN OCEAN (THE BAY OF BENGAL AND ARABIAN SEA) VALID FOR NEXT 120 HOURS ISSUED AT 0600 UTC OF 10.05.2021 BASED ON 0300 UTC OF 10.05.2021.

BAY OF BENGAL:

SCATTERED LOW AND MEDIUM CLOUDS WITH EMBEDDED MODERATE TO INTENSE CONVECTION LAY OVER SOUTHWEST BAY OF BENGAL OFF SRILANKA COAST, ALSO OVER SOUTHEAST BAY OF BENGAL & NORTH BAY OF BENGAL

PROBABILITY OF CYCLOGENESIS(FORMATION OF DEPRESSION) DURING NEXT 120 HRS:

24 HOURS	24-48 HOURS	48-72 HOURS	72-96 HOURS	96-120 HOURS
NIL	NIL	NIL	NIL	NIL

ARABIAN SEA:

BROKEN LOW AND MEDIUM CLOUDS WITH EMBEDDED INTENSE TO VERY INTENSE CONVECTION LAY OVER SOUTHWEST ARABIAN SEA ADJOINING INDIAN OCEAN BETWEEN LATITUDE 8.0°N TO 2.0°S LONGITUDE 50.0°E TO 70.0°E.SCATTERED LOW AND MEDIUM CLOUDS WITH EMBEDDED MODERATE TO INTENSE CONVECTION LAY OVER REST OF SOUTH ARABIAN SEA & MALDIEVES.

A CYCLONIC CIRCULATION EXTENDING UPTO 3.1 KM A.S.L. LIES OVER THE EQUATORIAL INDIAN OCEAN AND ADJOINING CENTRAL PARTS OF THE SOUTH ARABIAN SEA. IT IS LIKELY TO SHIFT EASTWARDS GRADUALLY AND UNDER ITS INFLUENCE A LOW PRESSURE AREA IS LIKELY TO FORM OVER SOUTHEAST ARABIAN SEA AND ADJOINING EQUATORIAL INDIAN OCEAN AROUND 14TH MAY. IT IS LIKELY TO BECOME MORE MARKED OVER THE SOUTHEAST ARABIAN SEA DURING THE SUBSEQUENT 48 HOURS.

PROBABILITY OF CYCLOGENESIS(FORMATION OF DEPRESSION) DURING NEXT 120 HRS :

REMARKS

THE MADDEN JULIAN INDEX (MJO) CURRENTLY LIES IN PHASE 4 WITH AMPLITUDE CLOSE TO ONE. IT IS LIKELY TO CONTINUE IN THE SAME PHASE FOR THE NEXT 4-5 DAYS WITH GRADUAL REDUCTION IN AMPLITUDE. THE PHASE OF MJO IS CONDUCIVE FOR ENHANCED CONVECTION OVER THE ARABIAN SEA & BAY OF BENGAL DURING THE FORECAST PERIOD. THE AREA OF CONVECTION DEVELOPED OVER SOUTHWEST ARBIAN SEA & ADJOINING EQUATORIAL INDIAN OCEAN AND ALONG & OFF SOMALIA COAST AROUND 8TH MAY IS PERSISTING CURRENTLY OVER SOUTHWEST & ADJOINING SOUTHEAST ARABIAN SEA AND EQUATORIAL INDIAN OCEAN. THE CROSS EQUATORIAL FLOW IN THE NEAR EQUATORIAL BELT IS LIKELY TO GET ENHANCED DURING THE NEXT 5 DAYS.LOW LEVEL CONVERGENCE OF 20-30 X10 (-5) / S AND AN UPPER LEVEL DIVERGENCE OF THE ORDER OF 30 X 10 (-5) / S IS PREVAILING CURRENTLY OVER THE REGION OF CONVECTION. WIND SHEAR IS FAVOURING CONVECTION TO PERSIST AND IT IS LIKELY TO CONTINUE SO OVER THE REGION. NUMERICAL MODELS ARE INDICATING PROBABLE CYCLOGENESIS OVER BOTH HEMISPHERES IN THE EQUATORIAL BELT TOWARDS THE END OF THE FORECAST PERIOD. HENCE WE ARE ASSIGNING A 10W PROBABILITY FOR CYCLOGENESIS OVER SOUTHEAST ARABIAN SEA AND ADJOINING EQUATORIAL INDIAN OCEAN TOWARDS THE END OF THE FORECAST PERIOD.

BAT : INSAT-3D IMG IMG_TIR1 10/8 um L1C Mercador

specific Bulletins

10-05-2021/(0300 to 0328) GMT 10-05-2021/(0830 to 0856) IST

PROBABILITY OF CYCLOGENESIS (FORMATION OF DEPRESSION):NIL: 0%, LOW: 1-25%, FAIR: 28-50%, MODERATE: 51-75% AND HIGH: 78-100% This is a guidance Bulletin for the WMO/ESCAP Panel Member countries. Please visit respective National websites for Country

TWO issued on **10th** indicated formation of LPA southeast Arabian Sea around 14th May likely intensification into a cyclone. (about days 4 prior to formation of cyclonic storm on 14th May). before Even formation of LPA on 13th May.

Genesis : Monitoring and prediction

- Analysis of all synoptic, satellite and NWP model products for genesis, intensity and track monitoring and prediction
- Development of an objective conceptual model
 - Daily Watch is essential for issue of tropical weather outlook for genesis
 - Check list
 - Road Map /Methodology

Factors Affecting Genesis and intensification of Cyclone (Gray's Parameter)

- Formative Stage covers the period from the genesis of a cyclonic circulation to the cyclonic storm stage through low pressure, depression and deep depression stages. Following factors are considered favourable for cyclogenesis.
 - Coriolis Parameter
- ii. Low level positive vorticity
- iii. Weak vertical wind shear of horizontal winds
- iv. Warm Sea surface temperature (> 26.5° Celsius)
- v. Large convective instability
- vi. Large relative humidity at lower and middle troposphere (CISK)
- vii. Pre-existing disturbance
- Broad scale features:
- 1. Madden Julian Oscillation
- 2. Equatorial Rosby waves
- 3. Kelvin waves
- 4. Inter Tropical Convergence Zone
- 5. LaNina conditions

Factors Affecting Genesis and intensification of Cyclone (Gray's Parameter)

Out flow channel

(iii) Weak vertical shear of the horizontal winds

(ii) Large values of low-level positive

relative vorticity,

(v) Large values of relative humidity in the lower and middle troposphere (vi)Mesoscale (iv) Conditional instability through a deep atmospheric layer Heat and

Heat and Moisture Transport Channel

(i) High SSTs exceeding 26°C and a deep thermocline

(Heavily dependent on Ocean observations)

Factors Affecting Genesis and intensification of Cyclone (Broad Scale features)

Parameters	Bay of Bengal	Arabian Sea
El-Nino Year (East Pacific warmer)	Less cyclones over BoB	No impact
La Nina Year (West Pacific warmer)	More cyclones over BoB (BoB warmer, more remnants from west Pacific)	No impact
Indian Ocean Dipole (SST West Indian Ocean – SST East Indian Ocean)	-ve IOD conditions favourable	+ve IOD conditions favourable
Madden Julian Oscillation (West to east propagating waves of enhanced & suppressed phase of convection). 30-40 days cycle. Movement : (5 0 /day towards east and 1 0 /day towards north) Impact: Increase RH	Phase 3,4,5	Phase 2,3
Rossby waves (east to west propagating waves). Develop due to rotation of earth and meander due to variation in coriolis effect with latitude. Impact: Increase vorticity	Presence support vorticity an activity. Most favourable for cyc	d hence convective logenesis after MJO
Kelvin waves (west to east propagating waves). These waves are trapped to coastlines and at equator. Their amplitude is highest at coast and decays exponentially with off shore distance (polewards).	Support MJO activity. Not m directly over cyclogenesis.	uch impact is seen
INDIA METEOROLOGICAL	DEPARTMENT	

Factors Affecting Genesis and intensification of Cyclone (Equatorial Waves)

Tropical Monitoring :: North Carolina Institute for Climate Studies (ncics.org)

Simultaneously propagating multiple waves are favourable for genesis of TC category storms over the BoB & AS in different seasons instead of single waves passing over the region.

Simultaneous occurrence of MJO, ER & KW being most effective and that of LW+KW being least effective for genesis of TC category of storms.
 There is no preferred association of any convectively coupled equatorial waves for genesis of depression over the BoB and AS.

Tools to use for tropical activity daily watch

- Vis and IR geostationnary animation over the last 24 hours
 - Superimposed with EIR in Dvorak colors
 - Observations data
- Analysis of avalaible numerical models guidance
 - SLP (sea level pressure)
 - Relative Vorticity at 850 hPa : measures the rotation of air over itself. A maximum of 850 hPa vorticity shows deep convection organizing with circulation.
 - Low level winds (Favorable low level surges, or inflows, with trade wind or monsoon wind)
 - Upper level winds (200 hPa), threshold at 20 kt : upper level outflows, high or ridges favorable for good divergence, vertical wind sheared

areas

Digital Forecasting System is very helpful for tropical daily weather watch :

Digital Forecasting System is not sufficient

- In addition, forecaster should consult data from internet sources
- Internet data :
 - Scatterometry data
 - Micro-wave imagery for developing lows
 - CIMSS maps (vertical wind shear, upper level divergence)
 - MJO/OLR dry or enhanced convection phases.

	Synergie 4.3.0.2 [pompei] In configuration REUNION	·
Hon 24/11/08		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i 题 ≶ 🔑 💸 🙀 🌢	
		ion tools
		Mon 24/11/2008 13:00
		Presyg_reunion Temsi_Reunion
		Grand_Indien
	0k	Quit

Tropical Cyclone Module is not sufficient

Data and products from various national and international agencies need to be tapped through website. A few are given below

Track and intensity forecast	Satellite imageries and products
Products	* Monterey
MONTEREY Tropical Cyclones	CIMSS Tropical Cyclones
CIMSS Tropical Cyclones	* TPC POLAR ORBITING SATELLITE DATA
ECMWE-LatestTropicalCycones	LINKS
	♦ TRMM
The mideal eventeens are disting	♦ Interactive Weather Satellite Imagery
Tropical cyclone prediction	Viewers from NASA GHCC
centres	♦ Satellite INSAT
WMO site	✤ Geostationaries from DUNDEE
A. Satallita darivad winda	FNMOC Satellite Data Tropical Cyclone
* Satellite derived winds	Homepage
◆ Oceansat-II	* RSS / Tropical Cyclone Microwave Data
	Archive
♦ <u>ASCAT</u>	♦ AMSU-A NASAAMSU-A NASA, AMSU
	♦ UW-CIMSS
SST and Heat Content	Large scale features
✤ NOAA SST & Tropical	◆ <u>OLR, MJO map- BOM</u>
Cyclone Heat Potential	CPC - Climate Weather Linkage: MJO
✤ Anomalies in SST	♦ OLR animations NOAA
(Nesdis Noaa)	CDC Map Room Climate Products
Anomalias in SST (ENMOC)	Probability of a Tropical Cyclone
* Anomalies in SST (FIVMOC)	

Flow chart for genesis monitoring

Flow chart for genesis monitoring

Methodology for tropical activity daily watch

- First step: Rapid analysis of the tropical convective activity
- □ Is it poor, moderate, strong ?
- □ What is its evolution during the last 24 hours ?
 - ✓ The deep convection has intensified or not (in geographical extension, in intensity coldness of Cb's top –, in cyclonic organization)?
 - Comparison must be done with the days before at the same hours, to avoid to be influenced by the diurnal effect : over ocean, <u>deep</u> <u>convection naturally intensifies (depth and extension) during the</u> <u>night, between 18 UTC and 02 UTC</u> (maximum of deep convective activity at the end of the night, near 23 UTC-01UTC).

MONITORING OF CYCLOGENESIS : CONVECTIVE CLOUD CLUSTER

Criteria	Source	Product
(i)> 5x5°	INSAT 3D/3DR	Visible imagery
(ii)reflectivity > X		
(iii)Number of clusters with		
reflectivity> X		
(iv)organized if		
associated with		
low level circulation centre		
	Criteria (i)> 5x5° (ii)reflectivity > X (iii)Number of clusters with reflectivity> X (iv)organized if associated with low level circulation centre	CriteriaSource(i)> 5x5°INSAT 3D/3DR(ii)reflectivity> X

MONITORING OF CONVECTIVE CLOUD CLUSTER THROUGH IR IMAGERY

Parameters	Criteria	Source	Product
(i) Area	(i)> 5x5 °	INSAT 3D/3DR	IR imagery
(ii) Depth	(ii)CTT < -40°C	Meteosat	
(iii)No. of clusters with CTT < -40°C	(iii)No. of clusters with CTT < -40°C		

MONITORING OF CONVECTIVE CLOUD CLUSTER

Parameters	Criteria	Source	Product
Persistence of convective clusters during past 24 hrs	 (i)Is it persisting for more than 24 hrs (ii)increase or decrease in area (iii)increase/decrease in depth (iv)increase in organisation/scattering (v)increase/decrease in number of clusters (vi)Clusters coming closer or going away from each other 	INSAT 3D/3DR	IR imagery

MONITORING OF LLCC MICROWAVE PRODUCTS

Parameters	Criteria	Source	Product
(i)single or multiple LLCC ii) cyclonic	(i) Associated wind speed=17kt or more (ii)Centre location well	Multiplatform Satellite Surface Wind Analysis -	
circulation (iii)Outer wind field structure	defined (iii) storm size extends upto extent of circulation	Colorado State Univ	
(iv)Storm size information	(iv)If multiple LLCC→They are coming together or away	<u>http://rammb</u> .c ira.colostate.ed u/products/tc_r	
	(v)Within deep convective cluster or exposed LLCC (outside deep convection	ealtime/image_ mpsatwnd.asp	

3	. ENVIRON	IMENTAL PARA	METERS	
		~		

Pa	rameters	Criter	Source	Product
		ia		
(a)	SST	SST>26.5°C	TMI, AMSRE, Windsat) <u>http://www.aoml.n</u> <u>oaa.gov/phod/data</u> <u>phod1/work/HHP/</u> INSAT 3D imd.gov.in	Data and analysis Data and analysis
			GODAS INCOIS ROMS INCOIS	Data and analysis Data and analysis

Parameters	Criteria	Source	Product
(b) Tropical	>50 KJ/cm ²	http://www.aoml.no	
Cyclone Heat Potential		aa.gov/phod/dataph	Data and
(TCHP)/ Ocean heat		od1/work/HHP/	Analysis
content (OHC)			
		http://rammb.cira.co	
		lostate.edu/products/t	
		<u>c_realtime/products/s</u>	
		<u>torms/</u>	Data and
			Analysis
		INCOIS	,

Parameters	Criteria	Source	Product
(c) Depth of 26 deg.	Threshold : > 50 metre	http://www.aoml	
Isotherm		.noaa.gov/phod/	
		dataphod1/work	
		<u>/HHP/NEW/</u>	
(d) Sea height anomaly	Threshold: > 10 centi metre	http://www.aoml. noaa.gov/phod/da taphod1/work/H_HP/ INCOIS	

Parameters	Criteria	Source	Product
(e) Mid-	Threshold : > 50%	IMD (NWP)	Model
tropospheric relative		NCMRWF	analyses
humidity		IMD (GTS)	Actual observation
		Microwave satellite <u>http://manati.star.</u> <u>nesdis.noaa.gov/</u> <u>datasets/SSMIDat_a.php</u>	Moisture

Parameters	Criteria	Source	Product
(f) Upper level wind	 Upper level outflow region Location of trough Location of ridge Jet region and strength Steering current 	CIMSS http://tropic.ssec. wisc.edu/real- time/windmain.ph p?&basin=ndian& sat=wm5∏=w vir&zoom=&time MD/SAC-ISRO IMD/SAC-ISRO IMD (Radar Lab), New Delhi, imd.gov.in	Satellite based wind (300-100 hPa) Satellite based wind (300-100 hPa) wind Observation Radar based upper wind

Pa	rameters	Criteria	Source	Product
(g)	Lower level winds	 Lower level inflow LLCC and intensity (outer layer) Outer storm size 	CIMSS <u>http://tropic.ssec.</u> <u>wisc.edu/real-</u> time/windmain.ph p	Satellite based wind (850-700 hPa)
		Comparison with actual	IMD/SAC-ISRO	Satellite based wind (850-700 hPa)
		wind Determination of the model with best initial condition	IMD	Wind observations
			IMD (Radar Lab), New Delhi, imd.gov.in IMD (NWP)	Radar based wind over Radar station Model Analysis

INDIA METEOROLOGICAL DEPARTMENT

Parameters	Cr	riteria		Source	Product
(h) Vertical Wind	· <10	kt-low	wind	CIMSS	Wind shear
shear	shear · 10-20 kt shear · >20	- Moderate kt-	wind high	http://tropic.ssec. wisc.edu/real- time/windmain.ph p	(200-850 hPa level) Wind shear
	shear	wind		AMSU	(500-850 hPa level)
	<u>Threshold</u> <u>moderat</u>	: e wind shear	<u>low to</u>	http://rammb.cira.c olostate.edu/produc ts/tc_realtime/prod	Area Averaged wind shears and Layer means
	Low to mode	erate wind Sl	hear	ucts/storms/	

3. ENV	IRONMENTAL PARAMETERS		
Parameters	Criteria	Source	Product
(h) Vertical	Decrease/increase- intensification/	CIMSS	24 hr tendency
Wind shear tendency	weakening	<u>http://tropic.ssec.</u> <u>wisc.edu/real-</u> <u>time/windmain.ph</u> p	in wind shear
(i)Upper level divergence	TC secondary circulation Convective updraft Outflow Storm development Threshold : >10x10 ⁻⁵ sec ⁻¹	CIMSS http://tropic.ssec. wisc.edu/real- time/windmain.ph_p	Satellite based analysis 300- 100 hPa level
convergence	Entrainment of dry air Low level inflow Threshold : > 10x10 ⁻⁵ sec ⁻¹	<u>CIMSS</u> <u>http://tropic</u> .ssec.w isc.edu/real- time/windmain.php	Satellite based 850 hPa analysis

Parameters (k) Lower level vorticity

Criteria		Source	Product
• Measure of rotation		http://tropic.ssec.w	Satellite based
• Positive : Cyclonic		isc.edu/real-	850
• Negative : Anti-cyclonic	;	time/windmain nhn	hPa vorticity
· Increasing/decreasing –		time/windmam.php	·
Strengthening/weakeni	ng of TC		Satellite based
· Merging of vorticity	centres		700 hPa
leads to intensification	and vice		vorticity
versa			
Threshold : > 10x10 ⁻⁵ sec ⁻¹			Satellite based

Parameters	Criteria	Source	Product
(I) MJO	• MJO index in phase 2-5	http://cawcr.gov.a	Phase and
	are favourable for genesis.	u/staff/mwheeler/	amplitude of
		maproom/RMM/fc	MJO and its
	· Amplitude >1 favourable for	sts/pd.MW05.Last	statistical forecast
	intensification.	.gif	Phase and
			amplitude of MJO
		http://www.cpc.nce	and its Dynamical
		p.noaa.gov/product	forecast
	Convection monitoring through	s/precip/Cwlink/MJ	
	animation,	O/CLIVAR/clivar_w	
(m)OLR	Diurnal variation Location and intensity of	<u>h.shtml</u>	
	convection		
	Threshold:<200watt/m ²	IMD	
		(TIR1, TIR2, WV)	

INDIA METEOROLOGICAL DEPARTMENT

4. GENESIS PROBABILITY BY DYNAMICAL STATISTICAL MODEL

Criteria	Source	Product
Above normal probability	CIRA http://rammb.cira.colostate. edu/projects/gparm/	Daily probability for 2 days
	http://www.ssd.noaa.gov/ PS/TROP/TCFP/ndian_oc_ean.html	Daily probability for 2 days
	http://www.ssd.noaa.gov/ PS/TROP/TCFP/index.ht	Climatological probability
	Criteria Above normal probability	CriteriaSourceAbove normal probabilityCIRA http://rammb.cira.colostate. edu/projects/gparm/http://www.ssd.noaa.gov/ PS/TROP/TCFP/ndian_oc_ean.htmlNOAA http://www.ssd.noaa.gov/ PS/TROP/TCFP/index.ht

4. GENESIS PROBABILITY BY DYNAMICAL STATISTICAL MODEL

Parameters	Criteria	Source	Product
Genesis probability by statistical models	IMD-GPP (grid)>30	IMD(NWP)	Daily probability for 7 days Daily probability
	IMD-Average GPP>08 Above normal Probability	IMD(NWP) ISRO Sriharikota ISRO,	for 3 days Daily probability for 7 days Based on
	Probability : above normal (matching index>0.6)	Ahmedabad	scatterometer pass

4. GENESIS PROBABILITY BY DYNAMICAL STATISTICAL MODEL

Parameters	Criteria	Source	Product
Genesis Probability by statistical models	Probability : above normal	JTWC http://www.cpc.ncep.noa a.gov/products/precip/C Wlink/ghazards/index.ph_p	Probability of genesis in the week
	Probability of genesis over a grid	Cyclone eAtlas-IMD www.rmcchennaieatlas.t n.nic.in	Climatology of genesis

5. GEN	NESIS MONITORING AND PREDIC	CTION BY NWP	
Parameters	Criteria	Source	Product
Monitoring and prediction of genesis	 two closed isobars with interval of two hPa is considered as 	IMD(NWP)	WRF Model analysis and forecast
	cyclogenesis (formation of depression) · In case of wind field,	IAF	WRF Model analysis and forecast
	 threshold cyclonic wind is 17 knots or more Location of centre is the location of lowest pressure 	NCMRWF	NCUM-R Model analysis and forecast

5.	GENESIS	MONITORING		PREDICTION	I BY NWP
----	----------------	------------	--	------------	----------

Parameters	Criteria	Source	Product
Monitoring and prediction of genesis	 two closed isobars with intervalof two hPa is considered as 	NCMRWF	NCUM Model analysis and forecast
	cyclogenesis (formation of depression)	GTS	JMA Model analysis and forecast
	• In case of wind field, threshold cyclonic wind is 17 knots or more	GTS	ARP Model analysis and forecast
	• Location of centre is the location of lowest pressure	ECMWF	ECMWF Model analysis and forecast

6. OFFICIAL MONITORING AND FORECAST

Parameters	Criteria	Source	Product
(a)NWP Models	 two closed isobars with interval of two hPa is considered as cyclogenesis (formation of depression) In case of wind field, threshold cyclonic wind is 17 knots or more Location of centre is the location of lowest pressure 	Model products of IMD/NCMRWF /NCEP/JMA/ ECMWF/ARP etc.	Number of closed isobars and associated surface wind speed

6. OFFICIAL MONITORING AND FORECAST

Parameters	Criteria	Source	Product
(b)Statistical models	Location of centre is the location of lowest pressure	CIRA / NOAA / IMD-GPP / ISRO / JTWC	Probability of genesis
(c)Radar	Reflectivity /Radial Velocity	RADAR Lab, IMD	Wind speed / Vertical extension of convective clouds
(d)Satellite observations	Intensity estimation	INSAT-3D / 3DR	T number based on Dvorak technique

6. OFFICIAL MONITORING AND FORECAST

Parameters	Criteria	Source	Product
(e)Synoptic observations	 two closed isobars with interval of two hPa is considered as cyclogenesis (formation of depression) In case of wind field, threshold 	GTS / INCOIS	Number of closed isobars and associated surface wind speed
(f)Environment al parameters	cyclonic wind is 17 knots or more • Location of centre is the location of lowest pressure	INCOIS / NRL / CIRA	Conditions for genesis, intensification and movement

Time Dated **1.Mean sea level pressure (MSLP) Central pressure:** Outer most closed isobar Pressure: Radius of outermost closed isobar Pressure deficit : No. of closed isobar (within 6 deg): Shape of isobar (circular/elliptical) Size of the system (lat./long.) 2.Number of days the low pressure area is persisting : **3.Region of occurrence of low pressure area :**

TEOROLOGICAL DEPA

4.24 hrs pressure change a. General description : **b.** Maximum fall and station/buoy : 5. Pressure departure from normal a. General description : **b.** Maximum negative departure and station : 6. Circulation: a. Vertical extension : **b.**Tilting c. Wind speed (sector):west/ east/ north/ south Surface 0.9 km 1.5 km d. Maximum wind (Magnitude, Region of occurrence and Distance of maximum wind from centre of circulation at surface level मौसम विज्ञान

- 7. Lower level convergence :
 - a. Maximum value and region of occurrence) :
 - b. Convergence in forward sector
 - c. Tendency during past 06/12/24 hrs
- 8. Upper level divergence :
 - a. Maximum value and region of occurrence :
 - b. Divergence in forward sector
 - c. Tendency during past 06/12/24 hrs
- 9. Lower level vorticity
 - a. Maximum value and region of occurrence):
 - b. Vorticity in forward sector
 - c. Tendency during past 06/12/24 hrs
- 10. Vertical wind shear
 - a. Minimum value and region of occurrence) :
 - b. Wind shear in forward sector
- 11. Wind shear tendency
 - a. Minimum value and region of occurrence :
 - b. Wind shear tendency in forward sector :

12. QPE

a. QPE during past 12 hrs

(Maximum value and region of

occurrence):

- b. QPE during past 24 hrs (Maximum value and region of occurrence) :
- c. Tendency (Increasing/decreasing) :
- **12.** OLR :
 - a. Daily mean (Maximum value and region of occurrence) :
 - b. 3 hourly mean (Maximum value and region of occurrence) :
 - c. Tendency (Increasing/decreasing) :
- 13. SST
 - a. Maximum SST and region of occurrence
 - b. SST in forward sector
 - c. Tendency in SST
- 14. Location and intensity from other sources
 - a. NOAA SSD
 - b. JTWC

Radar features :

1.Pattern : Line curve/Spiral band/Eye

2.line Curve (Number and tendency, associated maximum reflectivity and its place of occurrence

3.Characteristics of spiral bands (Number and tendency, Maximum reflectivity and its place of occurrence)

4.Eye characteristics :

- (i) Visible/Invisible width Tendency
- (ii) Open/ closed, If open howmuch and tendency
- (iii) Circular/elliptical
- 5. Characteristics of eye wall
 (i) maximum reflectivity and its place of occurrence and tendency
 (ii)Single eye wall/ double eye wall
 (iii)Size of eye and eye wall (Diameter/radius)
- 6. Pre-cyclone squall lines (Region of occurrence, time of occurrence
- 7. Precipitation characteristics (Place and time of occurrence of maximum precipitation)
- 8. Radius of maximum reflectivity (in different quadrants)
- 9. Radius of maximum wind (in different quadrants)
- 10. Vertical extension of convective clouds
- 11. Radar estimaded location of centre with confidence (Multiple centres in case of multiple radars) and intensity with confidence

Decision on cyclogenesis and further intensification

* Based on all the inputs as discussed in check list derived by following the sequential steps as given in the road map, forecaster will be able to take a judicious decision in the probabilistic/deterministic term.

Case Study

(To prepare extended range & short to medium range forecast bulletin based on 0300 UTC of 7th April, 2022)

Step 1: Broad scale features (MJO)

Step 1: Broad scale features MJO in phase 4 with amplitude less on 7th April. To move than1 eastwards into phase 5 during first half of week 1. Thereafter, will move across phases 6 & 7 during remaining part of the forecast period. Favourable for enhancement of convective activity over NIO during first half of week 1.

Step 1: Broad scale features (Equatorial waves)

12-Apr to 14-Apr

15-Apr to 17-Apr

Week 1 (first half):

3-5 mps easterly waves over central BoB, 3-5 mps westerly waves over EIO & adj. south BoB, Kelvin waves over south AS, low frequency background waves over EIO & adj. south BoB and Rossby waves over southwest BoB

Week 1 (later half):

Easterlies disappeared. Westerly flow more towards SIO. Kelvin waves over BoB & adj. EIO. And Rosby waves over SIO & adjoining Malay peninsula

Step 1: Broad scale features (Equatorial waves)

12-Apr to 14-Apr

15-Apr to 17-Apr

Week 2 (first half):

No easterly flow, westerly waves strong (3-5) over south AS and westerly flow over EIO & adj. south BoB, Kelvin waves over south AS and south BoB, low frequency background waves over EIO & adj. south BoBSIO & adj. south BoB.

Week 2 (later half):

Easterlies 1-3 mps over central BoB.. Westerly flow over EIO & adj. south BoB. Kelvin waves over BoB & adj. EIO. And Rosby waves over SIO.

Step 2: Synoptic scale features

INDIA METI parts o

Depth of 26 deg isotherm around 100 m over major parts of south BoB & AS.

Step 2: Synoptic scale features

Step 3: Climatological guidance

Fig. 1: Tracks of (a) cyclonic disturbances (MSW) ≥ 17 kt) and (b) cyclonic storms (MSW≥ 34 kt) in the month of April during the period 1891-2020

Step 3: Model guidance

- Most of the models including IMD GFS, GEFS, NCUM, NEPS, ECMWF, ECMM, JMA etc. are indicating that there is no likelihood of formation of depression over NIO during next 2 weeks. IMD GPP is indicating a potential zone of cyclogenesis over southeast BoB on 8th with west-northwestwards movement. However, models like GFS, NCUM, ECMWF etc. are indicating that the existing cyclonic circulation over south Andaman Sea would move westnorthwestwards towards TamilNadu coast.
- **Conclusion:**
- In view of all the above,
- Probability of cyclogenesis for next 120 hours is taken as NIL.
- Probability of cyclogenesis during next 2 weeks is taken as NIL. However, the cyclonic circulation over south Andaman Sea would move west-northwestwards.

Thank you

