Tropical Cyclone : Intensification and movement

M Mohapatra

INDIA METEOROLOGICAL DEPARTMENT
MAUSAM BHAVAN, LODI ROAD , NEW DELHI-110003 mohapatraimd@gmail.com
भारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

मारत मौसम विज्ञान बिभाग
INDIA METEOROLOGICAL DEPARTMENT

Presentation layout

* Introduction
* Cyclone Monitoring
* Genesis
\& Location
Intensity
* Movement
*Conclusions

मारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

Cyclone Monitoring, Forecasting and Warning Services

* Cyclone Monitoring
* Genesis, Location, Intensity (wind, pressure), Structure, size
* Adverse weather (rainfall, storm surge, inundation)
- Cyclone Prediction
\& Location/Track, Intensity, structure/size
* Adverse weather (Heavy rain, Gale wind, storm Surge, inundation, sea state)
*Warning Bulletins (National/international, user and sector specific, impact based
Warning dissemination (Redundancy, last mile, disaster managers, Press/media, all stake holders

Evolution of Cyclonic disturbances Over the Indian Seas

Low pressure system	Maximum sustained winds	
Low	< 17 knots	< 31 kmph
Depression	17 - 27 kts	31 - 51 kmph
Deep Depression	$28-33$ kts	52 - 62 kmph
Cyclone	34-47 kts	63-87 kmph
Severe Cyclone	48 - 63 kts	88-117 kmph
Very Severe Cyclone	64 - 89 kts	118 - 166 kmph
Extremely Severe cyclone	90-119 kts	167-221 kmph
Super Cyclone	120 kts \& above	222 kmph \& above
System	Pressure deficit (hPa) at the centre	
Low	1.0	
Depression	$1.0-3.0$	
Deep Depression	3.0-4.5	
Cyclone	4.5-8.5	
Severe Cyclone	8.5-15.5	
Very Severe Cyclone	15.5-65.6	
Super Cyclone INDIA	नोसम विज्ञान विभा> 65.6 TEOROLOGICAL DEPARTMENT	

Determination of Centre

मारत मौसम बिज्ञान बिभाग
INDIA METEOROLOGICAL DEPARTMENT

Location of Centre:

- When the system is far away from the coast and not within the radar range, satellite position gets more weight, though position is modified some times with availability of ship and buoy observations.
- When the system comes closer to the coast, radar position gets maximum preference followed by the satellite position.
- When the system is very close to coast or over the land surface, the coastal observations get the highest preference followed by radar and satellite observations.
- The average confidence level of locating the centre of the system over the NIO is about 50 km .
- The landfall point and time of the TC is determined based on the available hourly coastal observationa and AWS.
- In their absence, the radar observations followed by satellite observation is used for this purpose.

Determination of Intensity

Estimated central pressure (ECP)

Shape and size (Radius of Outermost closed isobar (ROCI) of Low pressure system

Centre based on surface wind

Scatterometry products

(only once/twice daily, rain contamination and unability to measure more than 50 knots, Less swath)

Ships

Buoys

Buoy and ships observations for MSLP and wind centre

27 Dec 2011: 03UTC CS: 12.0N/87.0E, 40Knots

मारत मौसम
INDIA METEOROLOGICAL DEPARTMENT

Coastal observations for MSLP and wind centre

Hourly Observations of NISHA cyclonic storm during 25-27 November 2008

Time (UTC) \rightarrow	26 November 2008						27 November 2008			
Station	1800	1900	2000	2100	2200	2300	0000	0100	0200	0300
Cuddalore (43329)		$\underbrace{25}_{24} \mathrm{~m}_{5 / 4}^{25}$	$\underbrace{25 \cdot v_{5 / 5}^{20}}_{25 \cdot}$			$\boldsymbol{v}_{25}^{25}, \underbrace{25}_{5 / 5}$				
Karaikal (43346)	$\begin{array}{ccc} 25 & <982 \\ 95 \cdots & \frac{982}{} \\ & \% & \% \\ 24 & 4 / 3 & 4 \end{array}$		$\begin{gathered} { }_{25}^{4} \begin{array}{c} 4 \\ 4 \\ 95 \end{array} \begin{array}{c} 968 \\ 59 \\ 24 \\ 5 / 4 \end{array} \\ \hline 5 \end{gathered}$		$\begin{array}{ccc} 25 & \ll & 958 \\ 95, & 51 \\ 95 & 1 / \\ 24 & 1 / 4 & 5 \end{array}$	$\begin{array}{ccc} 25 & \ll & 959 \\ 951 & 49 \\ 95 & 1 / \\ 24 & \cdots & 5 \\ 24 / 4 & 5 \end{array}$	$\begin{array}{ccc} 25 & \ll & 958 \\ 95, & 53 \\ & \ldots & 1 / 2 \\ 24 & 5 / 4 & 5 \end{array}$	$\begin{array}{ccc} 24 & \ll & 965 \\ 95 & 46 \\ { }^{24} & 1 / 2 \\ { }^{24} & 5 & 5 \end{array}$		
Nagapattinam (43347)	$\left\{\begin{array}{cc} 24 & \ll{ }_{62}^{985} \\ 94 \cdot 0^{2} & \% \\ 24 & \% \\ 2 / 4 & 4 \end{array}\right.$				$\begin{array}{lll} 24 & <{ }_{964}^{964} \\ \omega_{34} & \\ 94 & \ldots & \% \\ 24 & \ldots / 4 & 5 \end{array}$		$\begin{array}{lll} 23 & \mathbb{2}^{962} \\ 94 & { }_{40} \\ v^{23} & \% \\ 23 & 4 / 4 & 6 \end{array}$	$\begin{array}{ccc} 23 & u^{970} \\ 94 . . & 34 \\ 23 & \ldots / \% \\ & \gamma_{5 / 4}{ }^{7} \end{array}$		

Utility of Coastal Hourly Observations for landfall point and time

Hourly Observations of KHAIMUK cyclonic storm during 13-16 November 2008

Time (UTC) \rightarrow Station	$\begin{gathered} 15 \text { Novembe } \\ 1500 \end{gathered}$	$\begin{array}{r} 2008 \rightarrow \\ 1600 \end{array}$	1700	1800	1900	2000	2100	2200
$\begin{aligned} & \text { Ongole } \\ & (43221) \end{aligned}$							${ }_{23}^{25} \underbrace{80}_{3 / 5} \underbrace{985}_{1}$	
$\begin{aligned} & \text { Kavali } \\ & (43245) \end{aligned}$				23		23		
$\begin{aligned} & \text { Nellore } \\ & (43240) \end{aligned}$		${ }^{22}{ }^{22}{ }_{014}$	$\begin{array}{ccc} 23 & \psi_{012} \\ 9 & 0_{57} \\ 95: O_{5} \\ 22 & { }_{3 / 4} \end{array}$					

मारत गौसम बिज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

Current Status of location estimation is mostly

 satellite driven

आतरत INDIA MET

100213

Location of Centre:

(b) Satellite

- In the initial stage, the centre is determined, from the centre of the low cloud lines (IMD, 2003).
- Similar is the case in shear pattern, when the convection lies away from the centre.
- As the system intensifies and acquires the banding pattern, the centre is determined from the banding feature using logarithmic spiral.

In the CDO pattern, the centre of CDO is the centre of the system.

- In the eye pattern, the centre determination is easier and accurate as it is same as the centre of the eye of the cyclone.

Visible imagery for cyclone monitoring

Helps better in monitoring the centre and intensity of cyclone, as

- It filters out the high clouds
- It has better resolution (2 km) compared to IR (8 km)

Limitations

- It is available only during day time
- It can not measure convection quantitatively

SUPER CYCLONE GONU DATE: 04062007 INTENSITY T6.0 CENTRE 19.6N/64.3E

IR imagery for cyclone monitoring

- IR imagery is available for continuous monitoring round the clock
- It is essential to compare the IR imagery with Visible imagery for better understanding of cyclone

IR imagery clear shows that the VIS gives a false cyclone is of curved band pattern signature of Eye

मारत गौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

Enhanced IR Imagery for cyclone monitoring

- Based on cloud top temperature ranges in different shades
- Helps in better identification of location and intensity
- Enhanced IR imageries are used in Dvorak Technique

04Z EI R imagery of TC Mala (28-04-06)

Water Vapour imagery for cyclone monitoring

- Water vapour imagery mainly helps in the following
- Movement of cyclone with
- Location of westerly trough
- outflow
- Ridge
- Middle and upper tropospheric humidity
- It does not provide centre and intensity

Role of westerly trough in Akash

मारत गौसम बिज्ञान विभाग
INDIA METEOROLOGICAL DEPARTMENT

Banding pattern

Eye pattern

148
$<=$ (5H Exightiness Temp (Kelwin)

Utility of superimposed image of NOAA 19 and Meteosat7

$\begin{array}{lll}05 / 25 / 09 & 0000 Z & \text { 02B AILA } \\ 05 / 25 / 09 & 0807 Z & \text { NOAA-19 } \\ 0.2\end{array}$ $05 / 25 / 090830 \mathrm{Z}$ METEO-7 VIS

- These images are helpful to locate the centre of system

Utility of brightness temperature for cyclone monitoring

$\stackrel{2018022}{2009}$
AMSU-B Channel 16 (as GHz) Brightness Temperature (C) ${ }_{\text {NOAA-15 }}^{0524}$ Time:

Naval Research Liab www, nrimry navy mil/sat_products.html
$\begin{array}{lllllllll}190 & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270\end{array}$

- These images are helpful to locate the centre in the initial stage
- The product is extensively available in US Navy site

Cyclone centre fixing using Doppler Weather Radar

1. I nitial Centre fixing is essential for accurate model predictions.
2. Required for accurate short range forecasts
3. Multiple circulations within the centre can be detected
4. Cloud centre is generally located accurately but may not be the cyclone centre
5. Satellite centre is different from Radar centre in some cases
6. Vortex tilt can be seen in radar data

Center fixing by Radar

- Eye or the centre is derived from a continuous and logical sequence of observations.
- Geometric centre of the echo-free area -centre.
- If the wall cloud not completely closed, centre is found by sketching the smallest circle or oval superimposed on inner edge of existing portion of wall cloud.
- When wall cloud is not developed fully but centre of circulation is identifiable its reported similar to eye.

Cyclonic Spiral bands Fitting centre with spirals
 File : 2006102816484046.caz
 Type : $\operatorname{MAX}(Z)$
 28.10.2006

Range: 350.0 km

16:48:40

dB Z		
	46.7 -	$50.0+>$
	43.3	46.7
	40.0	43.3
	36.7 -	40.0
	33.3	36.7
	30.0	33.3
	26.7	30.0
	23.3	26.7
	20.0	23.3
	16.7 -	20.0
	13.3	16.7
	10.0	13.3
	6.7	10.0
	3.3	6.7
	$0.0-$	3.3

CHENNAI
Scan R : 500 km
Scan Res: $0+60 \mathrm{~km}$
Disp R $\ddagger 350 \mathrm{~km}$
Disp Res $\ddagger 1.400 \mathrm{~km}$
PW + Long
PRF: 300 , 0
AS: 12.00 deg/s
TS : 24
RS : 1
CC : Doppler 10
SQI: 0.25
CSR: 10.0 dB
LOG $\ddagger 2.0 \mathrm{~dB}$
$\begin{array}{lr}\mathrm{H} & \vdots \\ \mathrm{LS} & 18.00 \mathrm{~km} \\ & 0.20 \mathrm{~km}\end{array}$

CDR Chennai

मारत मौसम बिज्रान बिभाग INDIA METEOROLOGICAL DEPARTMENT

Center fixing in eye pattern

मारत मौसम बिज्ञान बिभाग INDIA METEOROLOGICAL DEPARTMENT

Cyclone centre using V-Cut

CDR Chennai

Centre from Radial Velocity Couplet

मारत मौसम बिज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

Location estimation error

- It is about is about 55 km over the sea areas (standard error of satellite estimation).
- Location error of a depression is more than a TC.
- According to Elsberry (2003), the errors in determining the TC centre over the northwest Pacific Ocean can be upto 50 km by satellite fixes, 20-50 km by radar observations and by about 20 km by aircraft reconnaissance.

Landfall Location estimation error

- Landfall point estimation error is $\mathbf{1 4 0} \mathbf{k m}$ or more prior to $\mathbf{1 8 9 1}$ for west coast and more than 105 km for east coast. It reduced to about 100 km by the end of 1940 for both the coasts and to 55 km by the end of 1960. It further reduced to about 25 km by 2010 mainly due to installation of coastal AWS during late 2000s.
- Landfall time estimation error may be about half an hour since 1974 with introduction of coastal hourly observations and CDRs. During 1960-1974, it may be at least one and a half hour with the three hourly observations.

Methods for Estimating Intensity

Beaufort Scale (0-12: Calm to hurricane)
Anemometers - Biases in Early Instruments
Pressure-Wind Relationships
Utilizing Size (Radius of Maximum Wind) Information
Storm Surge
Wind-caused Structural Damage
Inland Wind/Pressure Decay Models
Satellite (polar - 1960, Dvorak technique 1974, INSAT 1982)
Buoys
Aircraft Reconnaissance (?)

Intensity estimation:

(a) Satellite:
(1) INSAT/METSAT
(2) Intensity from NOAA SSD:
(b) Radar
(c) Synoptic analysis
(d) Model analysis
(e) Intensity determined by other warning centres
(e) Finally agreed official intensity
(f) Confidence

In synoptic method, the available surface observations are taken into consideration to find out maximum sustained wind and number of closed isobars at the interval of 2 hPa within a specified region around the system centre (5 deg . Lat/long. Box)

Intensity estimation: Synoptic method

In synoptic method, the available surface observations are taken into consideration to find out maximum sustained wind and
number of closed isobars at the interval of 2 hPa within a specified region around the system centre (5 deg . Lat/long. Box)

Intensity estimation: Dvorak's Technique

$\begin{gathered} \text { C.I. } \\ \text { Number } \end{gathered}$	Max. Wind Speed (knots)	Pressure depth (in mb)	The technique relies on four distinct geophysical properties that relate organised cloud patterns to TC
1	25		1. Vorticity, 2.Vertical wind shear, 3. Convection, and 4. Core temperature.
1.5	25		
2	30	4.5	
2.5	35	6.1	
3	45	10.0	ADT
3.5	55	15.0	AODT
4	65	20.9	3. Application of DT to microwave
4.5	77	29.4	imageries
5	90	40.2	4. Application of DT over land
5.5	102	51.6	Limitations
6	115	65.6	Not verified over NIO, Averaging problem, Pressure wind relationship also not verified
6.5	127	80.0	
7	140	97.2	
7.5	155	119.1	
8	170	143.3	

VIS Analysis Diagram-1

DT number is determined by curvature of band

INDIA METEOROLOGICAL DEPARTMENT

Check list for other satellite derived products

7. Lower level convergence :
a. Maximum value and region of occurrence) :
b. Convergence in forward sector
c. Tendency during past 06/12/24 hrs
8. Upper level divergence :
a. Maximum value and region of occurrence :
b. Divergence in forward sector
c. Tendency during past 06/12/24 hrs
9. Lower level vorticity
a. Maximum value and region of occurrence) :
b. Vorticity in forward sector
c. Tendency during past 06/12/24 hrs
10. Vertical wind shear
a. Minimum value and region of occurrence) :
b. Wind shear in forward sector
11. Wind shear tendency
a. Minimum value and region of occurrence :
b. Wind shear tendency in forward sector :

Check list for the north Indian Ocean

12. QPE
a. QPE during past 12 hrs (Maximum value and region of occurrence) :
b. QPE during past 24 hrs (Maximum value and region of occurrence) :
c. Tendency (Increasing/decreasing) :
13. OLR :
a. Daily mean (Maximum value and region of occurrence) :
b. 3 hourly mean (Maximum value and region of occurrence) :
c. Tendency (Increasing/decreasing) :
14. SST
a. Maximum SST and region of occurrence
b. SST in forward sector
c. Tendency in SST
15. Location and intensity from other sources
a. NOAA SSD
b. JTWC satellite estimates

Intensity estimation by Radar

15.11 .2007
$12: 00: 07$

\qquad

(a) Radius of maximum reflectivity mostly corresponds to radius of maximum wind
(b) Radial wind
(c) Wind distribution by uniform wind technique
(d) Vertical profile over the station
(e) Mosaic products
f) Use of conversion technique for obtaining 10 m wind from radial

Radar features for intensity estimation

1. Pattern : Line curve/Spiral band/Eye
2. line Curve (Number and tendency, associated maximum reflectivity and its place of occurrence
3. Characteristics of spiral bands (Number and tendency, Maximum reflectivity and its place of occurrence)
4. Eye characteristics :
(i) Visible/Invisible, width and Tendency
(ii) Open/ closed, If open howmuch and tendency
(iii) Circular/elliptical
5. Characteristics of eye wall
(i) maximum reflectivity and its place of occurrence and tendency
(ii)Single eye wall/ double eye wall
(iii)Size of eye and eye wall (Diameter/radius)
6. Maximum wind and reflectivity
7. Radius of maximum reflectivity (in different quadrants)
8. Radius of maximum wind (in different quadrants)
9. Vertical extension of convective clouds

Intensity estimation error

* Average error in MSW estimation has reduced over the years.
* During the pre-satellite era (till 1960), the average error in intensity estimation may be at least one stage in Beaufort scale (5-15 knots or 3-8 mps upto severe cyclonic storm stage).
* There is no classification of intensity between very severe cyclonic storm and above intensity in Beaufort scale.
* The error could have reduced gradually during polar satellite era.
* It could have been T0.5 ($05-20$ knots or $3-10 \mathrm{mps}$) with the introduction of Dvorak's classification of intensity since 1974 (Goyal et al, 2012)

PREDICTION OF MOVEMENT

- CLIMATOLOGY INDICATES PREDOMINANTLY 3 TYPES OF MOVEMENT WESTERLY

NORTHWESTERLY
RECURVING FROM INITIALLY NORTHERLY TO NORTHEASTERLY DIRECTION
DUE TO NORMAL UPPER AIR FLOW PATTERN OVER SYSYTEM AREA

- THERE IS TENDENCY OF STORM TO MOVE POLE WARD DUE TO DIFFERENCE IN CORIOLIS PARAMETER IN NORTHERN AND SOUTHERN SECTOR OF THE STORM
- GREATER THE DIFFERENCE, FASTER WILL BE THE MOVEMENT
- MANY FORCES ACT ON THE STORM, HENCE TRACK NEVER SMOOTH
- THERE IS ALSO INTERACTION BETWEEN STORM AND EMBEDDED BASIC CURRENT. THIS MANIFESTS AS A TROCHOIDAL MOTION, CLEARLY SEEN IN RADAR FIXES

मारत गौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

Cyclone track forecasting methods

i) Statistical Techniques
i) Analogue
ii) Persistence
iii) Climatology
iv) CLIPER,
v) Chaos theory and Generic Algorithm method) Synoptic Techniques - Empirical Techniques
iii) Satellite Techniques Techniques
iv) Radar Techniques
v) NWP Models

- Individual models (Global and regional)
- IMDGFS (574), NCMRWF (574), ARP (MeteoFrance, ECMWF, JMA, UKMO, NCEP, WRF (IMD, IITD, IAF), HWRF (IMD), QLM
- MME (IMD) and MME based on Tropical Cyclone Module (TCM)
- EPS (Strike probability, Location specific probability
vi) Operational (Consensus) forecast

Movement of TCs

Tracks of cyclones over the north Indian Ocean during 1981-2008

At times cyclones display odd behaviour

 Display changing trends in motionRapid intensification close to a populated coastline.

Remaining quasi-stationary for long duration

Displaying erratic tracks such as looping, sudden acceleration or deceleration

Interaction with other weather systems

मारत मौसम बिज्ञान विभाग
INDIA METEOROLOGICAL DEPARTMENT

Analog method

1. Six hourly best track data of cyclones over north Indian Ocean since 1990 in digital form
2. $\mathbf{1 2}$ hourly data in cyclone Atlas during 1891-2009

Data from 1877-1890 are also available in hard copies in 1979 edition of cyclone Atlas
3. Adverse weather and damage reports

Tracks of Cyclones and Depressions in the Bay of Bengal and the Arabian Sea 1891-2007

Electronic version June - 2008
Cyclone eAtlas - IMD

India Meteorological Department Regional Meteorological Centre Chennai, India

* Most of the cyclonic disturbances above $15^{\circ} \mathrm{N}$ move in a north-northeasterly or northeasterly direction
* Below $15^{\circ} \mathrm{N}$ and left of $90^{\circ} \mathrm{E}$ they generally move in northnorthwesterly or northwesterly direction over the Bay of Bengal.

In Arabian Sea below $15^{\circ} \mathrm{N}$ they move in a north-northwesterly and above it they move northeasterly direction.

Climatological Method

October
1891-2009

Max. Speed of Movement of SCS (24-12)hrs \& in Case VSCS (36-24) Hrs

Average Speed of Movement of the System

CLIPER Model

* Its working principle is very simple, it takes monthly climatology of movement and speed of cyclonic disturbances from input files.
* It calculates the persistency of direction of movement and speed of the cyclonic disturbances for 09,12 and 24 hours as per our choose and forecast for the persistency for next 108 hours.
* It calculates the weighted mean of monthly climatology of direction of movement \& direction of speed and persistency of movement \& direction of speed which is the resultant direction of motion and speed of the cyclonic disturbance.

Example

Translation speed and sudden change in direction of TCs

- To summarise, the translation speed gradually decreases for about 24 hrs period pror to change in direction of movement.
- Minimum translation speed becomes about 10 kmph in most of the cases
- This is true for both cases of increase in northerly and southerly components during the change

Track forecasting by synoptic method TC Motion: The Beta Effect

- The "beta effect" accounts for 10-20\% (up to $2 \mathrm{~m} / \mathrm{s}$) of TC motion
- Results from quasi-symmetric cyclonic flow superimposed on the north-south gradient of the Coriolis force ($\beta=d f / d y$)
- "Simple" explanation from the Cartesian non-divergent barotropic vorticity equation

Beta Contribution: An air parcel displaced southward (northward) will acquire positive (negative) relative vorticity

- Results in an east-west dipole of maximum negative-positive vorticity generation across the cyclone

Vorticity Generation via Beta

Initially Symmetric Cyclonic Vortex

TC Motion: The Beta Effect

Advection Contribution: The resulting cyclonic advection of the Beta-generated vorticity produces a north-south dipole of local vorticity change

- Their combination locally produces two vorticity maxima, called "beta gyres", that induce a northwesterly component to TC motion (in the northern hemisphere)

$$
\frac{\partial \zeta}{\partial t}=-\left(u \frac{\partial \zeta}{\partial x}+v \frac{\partial \zeta}{\partial y}\right)-v \beta
$$

Local Vorticity Change

Advection of Vorticity

Vorticity Generation via Beta and Vorticity Advection

From Holland (1983)
नौसम विज्ञान विभाग
三OROLOGICAL DEPARTMENT

TC Motion (Synoptic) : Importance of P24P24

* The importance of P24P24 observation is amply illustrated in determining the track and land fall point.
The importance of Isallobars
- Lines passing through areas of equal pressure changes are known as Isallobars.
- An Isallobaric low is as good as a pressure low.
- The area of highest pressure fall (Isallobaric low) indicates the direction in which the system is heading.
- So Isallobars play a major role in prognosis of cyclonic storms movement.

Date/Time of observation (UTC)
-Mean Sea Level Pressure (Chennai)
_- Mean Sea Level Pressure (Sri Harikota)

Date/Time of observation (UTC)

MSLP and wind speed measured by AWS from 2300 UTC of 04 November to 1200 UTC of 08 November 2010 during severe cyclonic storm, JAL

- The AWS data including wind and pressure could very well help in monitoring the genesis, intensity, structure and movement of the landfalling cyclonic disturbances.

TC Motion (Synoptic): Steering Flow

Motion of Individual TCs:

- The deep layer environmental
flow accounts for a large fraction (up to 80\%) of TC motion
- Assumes the TC acts as a passive vortex moving with the speed and direction of the
mass-weighted deep layer flow
- When a deep layer estimate is unavailable use the following:

TC Intensity Vs. TC Environmental Steering

From Velden and Leslie (1991)

TD and TS: 700 mb flow Hurricane: 500 mb flow

Impact of convection on sudden change in track

 Southward shifting of area of intense convection is also seen in DWR imageries

मारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

Impact of convection on sudden change in track :
 30.12.2File : $2011123005034951 . \mathrm{ppz}$

01:03:Type: PPI (Z)

$56.0-60.0$
$52.0-56.0$

$48.0-52.0$
$-4.0-44.0$
$44.0-48.0$
$40.0-44.0$
$36.0-40.0$
$40.0-44.0$
$36.0-40.0$
$32.0-36.0$
$36.0-40.0$
$32.0-36.0$
$28.0-32.0$
$24.0-28.0$
$\begin{array}{r}24.0 \\ 20.0 \\ 16.0 \\ \hline\end{array}$
16.0
12.0
8.0
chennat \qquad $\begin{array}{llll}\text { Scan R } & 350 \mathrm{~km} \\ \text { Scan } & \text { Res: } & 0,50 \mathrm{~km} \\ \text { Disp } & \text { R } & 475 \mathrm{~km}\end{array}$
 PW: Long / 342 AS $\begin{aligned} & \text { TS } \\ & \\ & 43\end{aligned}{ }^{8.50 \mathrm{deg} / \mathrm{s}}$ $\begin{array}{l:l}\text { RS } \\ \text { RC } & 1 \\ \text { C } & \text { OFF }\end{array}$ $\begin{array}{l:l}\text { CL } & \text { OFF } \\ \text { SQI } & 0.25 \\ \text { CSR: } & 20.0 \mathrm{~dB}\end{array}$ $\begin{array}{l:l}\text { CSR: } & 20.0 \mathrm{~dB} \\ \text { LOG: } & 2.0 \mathrm{~dB} \\ \mathrm{AZ} & 0.0-359.0\end{array}$ $\mathrm{AZ}:$
$\mathrm{EL}:$
$-0.0-3 \mathrm{leg}$ DWR Chennai

Area of intense convection again shifted to north at the time of landfall

TC Motion (Synoptic): Trochoidal Motions

Motion of Individual TCs:

-Many cyclones experience "wobbles", or oscillations, with respect to their time averaged motion vector (usually less than the eye diameter)

- This trochoidal motion is believed to result from the co-rotation of the TC's circulation center with a smaller mesovortex (perhaps generated by a deep convective burst)
- Trochoidal motions are often removed from the official "best" track
- Trochoidal motions are often misinterpreted as "turns" if TC is tracked from center fix to center fix....forecasters
 beware

TC Motion (Synoptic) Fujiwhara effect

* Attraction between 2 tropical
cyclones close enough each other (named by Dr S. Fujiwhara who first studied the phenomenon)
* The Fujiwhara effect depends on the compared size and intensity of both systems
* It is possible to separate the motion of both vortex as a rotation
 around their centroid

Empirical rule for the Fujiwhara effect :
Dominates when distance between vortex < 6 degrees of latitude
Becomes progressively less important than the average basic
current for a separation distance of 7 to 15 degrees
Is too weak for more than 15 degrees.
मारत गौसम बिज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

Motion of Individual TCs:

- Some storms tend to drift toward their latent heating centroid (which may be offset from the circulation center due to vertical shear)
- Some storms drift toward synoptic- scale troughs (particularly if the trough is deepening)
- Many storms will move toward a weakness in a ridge (a relative low pressure in a high pressure system)
- Common theme: TCs tend to drift toward other areas of low pressure

Track forecasting by radar and satellite

1. Pre-cyclone squall lines (Region of occurrence, time of occurrence
2. Precipitation characteristics (Place and time of occurrence of maximum precipitation)
3. OLR
4. Maximum reflectivity
5. Steering flow

मारत गौसम विज्ञान विभाग
INDIA METEOROLOGICAL DEPARTMENT

Squall Lines \& rain bands:

>Squall lines are a kind of linear organized meso-scale convective systems, cause thunderstorms and torrential rain. Generally it appear ahead of landfalling TCs.
>Squall lines tend to form in the transition area between the TCs and sub-tropical high in a moist environment \& with a weaker cold pool than their mid latitude counterparts.
$>$ As per yihong Duan et.al (2011)about 40\% of landfalling TCs are associated with PreTc squall lines.
>The squall lines as per Parker and Johns's (2000), the region of $\geq 40 \mathrm{dBz}$ reflectivity extend longer than 100 kms for at least 2-3 hours and convection of this region is organized in linear or quasi linear shape with an apparent common leading edges.

Fig. 5 Schematic diagram of the genesis of pre-TC-squall line

Fig. 3: Doppler weather Radar Chennai imagery in association with cyclonic storm NISHA

TC Motion : Operational NWP Models

* Medium Range Forecast > GFS T-382 /574 L64 with
GDAS (00 \& 12 UTC)
>NWP products available from ECMWF, GFS (NCEP), JMA (Japan Meteorological Agency), UKMO also provided for medium range guidance and genesis prediction. >NWP division also provided six hourly intensity forecasts and genesis potential inputs during cyclone conditions.
Short Range Forecast WRF (ARW)
> WRF (NMM/HWRF)
> QLM at $40 \mathrm{~km}(00$ \& 12 UTC)
> MME Cyclone Forecast and EPS

TROPICAL CYCLONE "PHAILIN"
) vs NWP TRACKS BASED ON OO UTC OF O9-10-2013

सम विज्ञान विभाग
ROLOGICAL DEPARTMENT

Cone of Uncertainty in track forecasting

INDIA
 METEOROLOGICAL DEPARTMENT

Observed and Forecast Track

TC intensity forecasting methods

i) Statistical Techniques
i) Analogue
ii) Persistence
iii) Climatology
ii) Synoptic Techniques - Empirical Techniques (as discussed in case of genesis)
iii) Satellite Techniques Techniques
iv) Radar Techniques
v) NWP Models

- Individual models (Global and regional)
- IMDGFS (574), NCMRWF (574), ARP (MeteoFrance, ECMWF, JMA, UKMO, NCEP, WRF (IMD, IITD, IAF), HWRF (IMD), QLM
- Wind probability (To be developed) and risk
- Threat graphics (To be developed)
vi) Dynamical Statistical Model (SCIP)

Operational (Consensus) forecast

CLIMATOLOGY : DISTRIBUTION OF WIND IN DEPRESSION AND STORM

_ WINDS CLOSER TO CENTRE ARE WEAK IN A DEPRESSION OR LOW. HIGHER WIND OCCURS ABOUT 2-3 DEG AWAY FROM CENTRE

- WIND SPEED IS HIGHER NEAR THE CENTRE IN A CYCLONIC STORM
_ ASYMMETRY IN WIND FIELD IS MORE IN DEPRESSION THAN IN CYCLONE
_ HENCE THERE MAY BE DIFFICULT SITUATION IF ONLY WIND SPEED IS CONSIDERED. OTHER INPUTS LIKE SATELITTE AND RADAR INPUTS SHOUD BE TAKEN INTO CONSIDERATION.

SIGNIFICANT DEPARTURE FROM NORMAL WIND IN TERMS OF DIRECTION OR SPEED OR UNUSUAL DIURNAL VARIATION SHOULD BE NOTED AS POTENTIAL INDICATOR.

Probability of intensification

Monthly Probability of Intensification of D to CS
Basin(F): BOB+AS+Land, Period: 1891-2011

Note: Negative value indicates indeterminate probability Source: Cyclone eAtlas - IMD

मारत मौसम विज्ञान बिभाग INDIA METEOROLOGICAL DEPARTMENT

Monthly Probability of Intensification of CS to SCS
Basin(F): BOB+AS+Land, Period: 1891-2011

Monthly Probability of Intensification of D to SCS
Basin(F): BOB+AS+Land, Period: 1891-2011

Seasonal Probability of Intensification of D to SCS
Basin(F): BOB+AS+Land, Period: 1891-2011

Intensity forecasting by satellite method

* Continuous observation of cloud features in visible and IR imageries
* Use of microwave imageries
* Derived products (wind shear, vorticity, convergence/divergence
* Monitoring of brightness temperature/ cloud top temperature
 Giri Eye is clearly seen

[^0]

VSCS MADI (8-13 DEC. 2013)

Track of VSCS Madi was most unique. Hence a study was undertaken to analyse the diagnostic features leading to this unique track, intensification and weakening of the system. The following were the salient features of the VSCS Madi:
(i) It had a unique track with near northerly movement till $15.7^{\circ} \mathrm{N}$ and then recurving southwestwards to Tamil Nadu coast.
(ii) It moved very slowly during its northward journey and speed peaked up gradually after the re-curvature to southwest.

INTENSIFICATION PARAMETERS

Same as genesis parameters

Dynamic Parameters

1. Low level relative vorticity
2. Coriolis parameter
3. Inverse of the vertical wind shear of the horizontal wind between lower and upper troposphere (950 and 200 hPa levels)

Thermodynamic Parameters

1. Ocean Thermal energy to a depth of 60 m .
2. Degree of Conditional Instability as given by $\partial \theta \mathrm{e} / \partial \mathrm{p}$ (between surface and 500 hPa
3. Mid tropospheric Relative Humidity (between 700 and 500 hPa level)

- It then again moved to warmer SST over southwest BoB and therefore the system could retain its intensity of Depression on 11 and $12^{\text {th }}$ till it crossed coast.

मारत गौसम विज्ञान विभाग
INDIA METEOROLOGICAL DEPARTMENT

$6^{\text {th }}$ Dec. 2013

$7^{\text {th }}$ Dec. 2013

$8^{\text {th }}$ Dec. 2013

9th Dec. 2013
$10^{\text {th }}$ Dec. 2013
Ocean thermal energy was more than 50 kJ cm-2 during 6-8 Dec. 2013, the system intensified from Depression to VSCS and less than 50 kJ cm-2 from 9-11 when the system weakened from VSCS to Depression.

मारत गौसम बिज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

Low Level Relative Vorticity - 850 hPa

$2^{\text {nd }}$ Dec. 2013

$5^{\text {th }}$ Dec. 2013

A pre-existing low pressure area from south China Sea which moved westwards and became marked

6 ${ }^{\text {th }}$ Dec. 2013 ${ }^{\text {th }}$. The lower level convergence and relative vorticity increased from $5^{\text {th }}$ to $6^{\text {th }}$

मारत गौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

December,
2013.

6th Dec. 2013
7th Dec. 2013
$8^{\text {th }}$ Dec 2013

9th Dec. 2013

10 ${ }^{\text {th }}$ Dec. 2013
11 ${ }^{\text {th }}$ Dec. 2013
$12^{\text {th }}$ Dec. 2013
The vertical wind shear of horizontal wind had been low to moderate (1020 kts) during its life course but increased and became high (20-30 knots) only for a brief period from 0900 UTC of $9^{\text {th }}$ and on $10^{\text {th }}$ when the system weakened from VSCS to CS.

Mean humidity distribution at 700 hPa level and 500 hPa level on $8^{\text {th }}$ (Intensification, mean position of the storm 12.5/84.7)

Mean humidity distribution at 700 hPa level and 500 hPa level on 11 (Weakening mean position 13.8/83.4)

- According to Gray, a minimum threshold of 40\% Mid Tropospheric RH is necessary for tropical cyclogenesis.
- Low Mid Tropospheric humidity would lead to the entrainment of relatively dry environment air into the parcel and a reduction in up-draft parcel buoyancy.
- the relative humidity at 500 hPa on $11^{\text {th }}$ near the storm centre. was less than 40%.

TOTAL PRECIPITABLE WATER

$6^{\text {th }}$ Dec. 2013

10 th Dec. 2013
7th Dec. 2013
8 ${ }^{\text {th }}$ Dec. 2013
9th Dec. 2013

The Total Precipitated Water (TPW) imageries during 6-12 Dec. indicates that the dry and cold air penetrated into the southwestern periphery of the cyclone from 10th Dec.

- It gradually penetrated further towards the centre of the cyclone from the southern side.
- As a result, it isolated the core of the cyclone from the warm and moist air from the southeast sector at 0500 UTC of 11 December

POSITION OF RIDGE AND THE STORM CENTREAT 200 HPA

20 h Dec. 2013

- Ridge at 200 hPa ran about $10^{\circ} \mathrm{N}$ during the cyclone's life period. When the system was close to the ridge, it moved slowly.
- As it lay north of the ridge on $10^{\text {th }}$, it moved north-northeastwards under influence of upper tropospheric steering ridge which moved northward alongwith northward movement of TC.

CIRCULATION AT MID TROPOSPHERIC

- Due to gradual weakening of system, the steering level changed from upper troposphere to lower and middle troposphere.
- The influence of the upper tropospheric anticyclonic circulation to the east of system centre decreased and that of lower and middle level anticyclonic circulation lying to the west of the system centre increased.
- As a result, the severe cyclonic storm re-curved westwards initially and then southwestwards commencing after 0900 UTC of 10th December.

STEERING BY THE MID AND UPPER TROPOSPHERIC LEVEL CIRCULATION

$10^{\text {ti Dec. } 201310900 ~ U T C ~}$

$10^{\text {th }}$ Dec. 2013/1200 UTC

बिज्ञान बिभाग
GICAL DEPARTMENT

Low level northeast Monsoon strengthened with formation of Madi

- Helped in southwestward movement when the TC weakened over west central Bay of Bengal

NE MONSOON CIRCULATION AT 850 HPA

मारत गौसम बिज्ञान विभाग
INDIA METEOROLOGICAL DEPARTMENT

WEAKENING

Following reasons were responsible for the weakening:

1. As the system moved north of $15^{\circ} \mathrm{N}$, it encountered cooler sea surface temperature.
2. The RH at the mid tropospheric level was less than 40% from $10^{\text {th }}$ Dec.
3. Entraintment of cold and dry air from $11^{\text {th }}$ Dec. isolated the core of the system.

Rapid Intensification

* According to National Hurricane Centre (NHC), USA:
* Rapid deepening : If the ECP of a TC falls at the rate of $1.75 \mathrm{hPa} / \mathrm{hour}$ or 42 hPa in 24 hours
* Explosive deepening: If it is $\mathbf{2 . 5} \mathbf{~ h P a}$ /hour for $\mathbf{1 2}$ hours or $\mathbf{5} \mathbf{h P a} /$ hour for at least six hours.
* Rapid intensification/weakening: If Vmax changes by 30 knots during past 24 hrs(Kaplan and DeMaria, 2003)

Tracks of TC Phailin (2013) and TC Hudhud (2014)

Maximum Sustained Wind (MSW) Speed of TC Phailin \& TC Hudhud

Translational Speed and Intensity

मारत मौसम विज्ञान प्च
INDIA METEOROLOGICAL W:EFKRTMENT

Pressure

 Drop and intensity(c) PG for TC Phailin \& TC Hudhud

Eye characteristics

* TCs tend to form an eye detectable by aircraft (and presumably by microwave imagery) at a central pressure of $991 \pm 9 \mathrm{hPa}$, at an analysed best track intensity of $30 \pm 8 \mathrm{~ms}^{-1}$ (58 ± 16 knots) (statistics are median value at eye formation along with interquartile range). Vigh and Rozoff (2012).
* Eye is first seen at lower levels (at about 5 km): Vigh and Rozoff (2012).
* Once genesis occurs, TCs tend to form eye within 48 hrs of reaching tropical storm strength with MSW of 34 knots and more (Vigh and Rozoff, 2012).
* 51\% of TC over north Atlantic with banding pattern later developed an eye
* Average satellite observed diameter of the TC eye is about 55-85 km. Eyes with diameter less than 55 km are considered as small and those less than 85 km are considered to be large.
* According to Vigh et al. (2012), 75\% of the eyes emerge with diameters below 25nm (46 km).
* Storms rapidly intensify at the time of eye formation.

Hudhud

Phailin

मारत मौसम दि INDIA METEOROLOG

Eye characteristics

* Durden (2013) finds that the pressure altitude of the maximum temperature anomaly varies between 760 and 250 hPa
* There is a positive correlation between the maximum anomaly level and storm intensity, size, upper-level divergence, and environmental instability.

The temperature anomaly is defined as the difference between the observed temperature in the TC eye and a reference temperature representative of the conditions either outside or in the absence of the TC.

* According to Durden (2013), an average anomaly of at least 4 K is needed for even the weakest storms.
* Using the proportionality of pressure drop to average anomaly (roughly a factor of 5), an average temperature anomaly of 13K would correspond to a 65-hPa pressure drop.
* Willoughby (1979) and Shapiro \& Willoughby (1982): Temperature (height) of the clouds in the central region of the TC shows the strength of the updraft, which is part of secondary circulation. Colder (taller) clouds are associated with a more intense secondary pattern.

Structure/Size

Vigh and Rozoff (2012): RMW contracts from a median RMW of 80 km at 35 knots to approximately 45 km at 55 knots. For intensities of 65 kt and above, the rate of RMW contraction slows considerably.

* Carrasco et al (2014): TCs experiencing RI start with a significantly smaller size than those not undergoing RI.
* Cyclones not experiencing RI are approximately 10 n mi larger than cyclones undergoing RI when using RMW and mean R34 as the initial size parameters.
* In contrast, when using ROCI as the size parameter, there is only a negligible difference in size between the non-RI and RI cases.
* Emanuel (1989: Initial size of the vortex, as measured by RMW, played a substantial role in its subsequent intensification rate.
* If the initial vortex is too large, then no subsequent intensification occurs.

Carrasco et al (2014): it is difficult for RI to occur after about 90 km for RMW.

* Stern et al., 2015: As a TC intensifies, strengthened eyewall convection induces counter downdrafts and thus increase the warming in the eye which in turn contributes to decrease in central pressure (Willoughby, 1998). Contracting pressure gradient around the maximum wind allows the wind to rise and move inward from the RMW, leading to contraction of eye and eyewall.

Phailin

Date/Time in UTC (Blue for TC Phailin and Red for TC Hudhud)

Structure/Size

size of a TC wind field can vary with Ocean basin, time of the year, latitude, P_{c}, stage of development and environmental pressure (Atkinson, 1971, Frank and Gray, 1980, Cocks and Gray, 2002, Kimball and Muelakar, 2004, Mohapatra and Sharma, 2015).

* Knaff et al. (2014): Propensity of large TCs increases when TCs form during seasons that are characterised by enhanced low level vorticity and when TCs move towards the environment characterised by increasingly baroclinic, especially after peak in intensity and prior to recurvature.

TC tends to grow more as they intensify.
$\dot{*}$ intensifying TCs.
Carrasco et al (2014): it is difficult for RI to occur after about 260 km for mean R34. For both RMW and R34 size parameters, these thresholds lie near the boundary separating the medium and large cyclones, suggesting that once the TC has a large RMW and/or mean R34, it is rare for it to undergo RI.

Thank you

मारत मौसम बिज्रान धिभाग INDIA METEOROLOGICAL DEPARTMENT

[^0]:

