

RSMC New Delhi Attachment training 12 April 2022

# Operational TC forecasting at RSMC Tokyo – Typhoon Center



Ryo OYAMA RSMC Tokyo-Typhoon Center Japan Meteorological Agency (JMA)

# Content

- 1. Introduction to RSMC Tokyo
- 2. Real-time tropical cyclone analysis & Tropical cyclone forecast at RSMC Tokyo







## RSMC Tokyo – Typhoon Center (since 1989)

https://community.wmo.int/typhoon-committee

3



RSMC Tokyo -Typhoon Center at JMA is in charge of TC analysis and forecast for the western North Pacific ocean and South China Sea (EQ-60N and 100-180E).



#### **Diversity of Disasters in Japan**

- Japan is exposed to the risk of various disasters, due to its geographical features.
- Even recently, there are still many disasters that cause serious damages.
- These are predicted to become more frequent and intense because of global warming.



## Two TCs exist over the NW Pacific on 11 April 2022

Severe Tropical Storm Malakas (2201) approaches Japan. Tropical Storm Megi (2202) is around the Philippines with heavy rainfalls.





## Number of TCs in NW Pacific



Figure 3.2 Monthly number of named TC formation for 2020 compared to the climatological normal

Average number of TCs per year (1981-2010): Formation: 25.6 Accession: 11.4 Landing: 2.7

https://www.jma.go.jp/jma/jma-eng/jmacenter/rsmc-hp-pub-eg/annualreport.html

| Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| 2010 |     |     | 1   |     |     |     | 2   | 5   | 4   | 2   |     |     | 14    |
| 2011 |     |     |     |     | 2   | 3   | 4   | 3   | 7   | 1   |     | 1   | 21    |
| 2012 |     |     | 1   |     | 1   | 4   | 4   | 5   | 3   | 5   | 1   | 1   | 25    |
| 2013 | 1   | 1   |     |     |     | 4   | 3   | 6   | 8   | 6   | 2   |     | 31    |
| 2014 | 2   | 1   |     | 2   |     | 2   | 5   | 1   | 5   | 2   | 1   | 2   | 23    |
| 2015 | 1   | 1   | 2   | 1   | 2   | 2   | 3   | 4   | 5   | 4   | 1   | 1   | 27    |
| 2016 |     |     |     |     |     |     | 4   | 7   | 7   | 4   | 3   | 1   | 26    |
| 2017 |     |     |     | 1   |     | 1   | 8   | 6   | 3   | 3   | 3   | 2   | 27    |
| 2018 | 1   | 1   | 1   |     |     | 4   | 5   | 9   | 4   | 1   | 3   |     | 29    |
| 2019 | 1   | 1   |     |     |     | 1   | 4   | 5   | 6   | 4   | 6   | 1   | 29    |
| 2020 |     |     |     |     | 1   | 1   |     | 8   | 3   | 6   | 3   | 1   | 23    |
| 2021 |     | 1   |     | 1   | 1   | 2   | 3   | 4   | 4   | 4   | 1   | 1   | 22    |
| 2022 |     |     |     | 2   |     |     |     |     |     |     |     |     | 2     |

## Typhoon Faxai (2019) : T1915





Typhoon Faxai (2019) formed near Minamitorishima island on 5 Sep 2019, and moved northwestward. Faxai made a landfall near Chiba city on 8 Sep. When making the landfall, Faxai was accompanied by strong winds (MSW= 80 kt) and low central pressure (MSLP= 960 hPa) causing serious damages to the infrastructures such as houses, power transmission towers, and so on.



https://mainichi.jp/graphs/20190909/hpj/00m/040/002000g/21



# **Classification of Tropical Cyclone**

| Region                                                                 | Maximum<br>Sustaine<br>d Winds | 34 – 47 kt                 | 48 – 63 kt                     | 64 kt –                                                 |                                                       |                                                 |
|------------------------------------------------------------------------|--------------------------------|----------------------------|--------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|
| Western North<br>Pacific                                               | 10 min                         | Tropical Storm<br>(TS)     | Severe Tropical<br>Storm (STS) | Typhoon (T                                              | Y)                                                    |                                                 |
| Eastern North<br>Pacific<br>Central North<br>Pacific<br>North Atlantic | 1 min                          | Tropical Storm (T          | S)                             | Hurricane<br>Cat.1 (64 –<br>Cat.3 (96 –<br>Cat.4 (114 - | 82), Cat.2 (8<br>113) ,<br>- 135), Cat.5              | 33 – 95),<br>5 (136 –)                          |
| <mark>North Indian</mark><br>Ocean                                     | 3 min                          | Cyclonic Storm             | Severe<br>Cyclonic Storm       | 64 – 89<br>Very<br>Severe<br>Cyclonic<br>Storm          | 90 – 119<br>Extremel<br>y Severe<br>Cyclonic<br>Storm | 120 –<br>Super<br>Cyclonic<br>Storm             |
| Southwest<br>Indian Ocean                                              | 10 min                         | Moderate<br>Tropical Storm | Severe Tropical<br>Storm (STS) | 64 – 89<br>Tropical<br>Cyclone                          | 90 – 115<br>Intense<br>Tropical<br>Cyclone            | 116 –<br>Very<br>Intense<br>Tropical<br>Cyclone |
| South Pacific and<br>Southeast Indian<br>Ocean                         | 10 min                         | Tropical<br>Cyclone (gale) | Tropical<br>Cyclone<br>(storm) | Tropical Cyc                                            | clone (hurric                                         | ane)                                            |

# **Tropical Cyclone Information**

| RSMC TC advisory for 5-day forecast<br>(WTPQ50-55)           | 50/70 minutes after 00, 03, 06, 09, 12, 15, 18, 21 UTC    |
|--------------------------------------------------------------|-----------------------------------------------------------|
| SAREP (IUCC10) in BUFR Format to issue TC real-time analysis | a half to 1 hour after 00, 03, 06, 09, 12, 15, 18, 21 UTC |







**Dvorak Analysis** 

# Other RSMC-Tokyo products

- TC predictions from JMA Global Spectral Model (GSM) and Global Ensemble Prediction System (GEPS)
  - ✓ Center position
  - ✓ Central pressure and maximum wind speed (deviation from initial time)
- Prognostic Reasoning (WTPQ30-35 RJTD)
- Tropical Cyclone Best Track (AXPQ20)
- Tropical Cyclone Advisory for SIGMET (FKPQ30-35 RJTD)
- Other products on website only for committee members



## JMA's typhoon information website



https://www.jma.go.jp/bosai/#lang=en

# **Operational TC analysis and forecast**

#### **Real-time TC analysis**

- (i) Analysis of TC center and intensity by Dvorak Analysis including Early DA.
- (ii) Correction to TC center position and intensity estimated by Dvorak technique using the observations of polar orbiting satellites, in-situ observations, etc.

#### Forecast

- (i) Forecasts of TC center position at forecast times from 12 to 120 h using the forecasts of models by JMA, ECMWF, UKMO, and NCEP
- (ii) Forecasts of TC intensity at forecast times from 12 to 120 h using the TC intensity forecast guidance (TIFS).
- RSMC Tokyo issues TC advisory when a TC with MSW greater than 34kt exists, or a tropical depression (TD) is expected to upgrade to a tropical storm (TS) intensity within 24 h.
- RSMC Tokyo operationally implements the real-time TC analysis (position and intensity) and forecasts (track, intensity and others) from FT24 to FT120.
- > TC analysis and forecast are performed by two forecasters, respectively.
- RSMC Tokyo issues the TC analysis and forecasts by TC advisory (IUCC (SAREP), WTPQ3X, WTPQ5X etc.).

# **Real-time TC analysis**

- 1. Estimations of TC center and intensity rely on Dvorak technique with reference to other observations
- 2. Wind radii (30kt, 50kt) are estimated using sea surface winds from the satellite microwave scatterometer and Himawari-8 AMVs, considering CDO size.

# **Dvorak Analysis**



- Tropical Cyclones have their own characteristic cloud pattern for each life stage.
- Cloud pattern recognition using satellite imagery is a key to precisely estimate both of TC center and intensity.
- Original Dvorak analysis (Dvorak 1975 and 1984) gives Current Intensity (CI) numbers from 1.5 to 8.0.

# Enhanced IR (EIR) image

| 61212 | 686        | CDG (Coldest Dark Gray   | /) - 80°C ≧ TBB               |
|-------|------------|--------------------------|-------------------------------|
| сма   | сма        | CMG (Coldest Medium Gray | /) - 75°C ≧TBB>- 80°C         |
| ~     |            | W (White)                | - 69°C≧TBB>- 75°C             |
| æ     | Б          | B (Black)                | - 63°C≧TBB>- 69°C             |
| L0    | 831        | LG (Light Gray)          | - 53℃≧TBB>- 63℃               |
| MG    | Ma         | MG (Medium Gray)         | - 41℃≧TBB>- 53℃               |
|       | DG         | DG (Dark Gray)           | - 30℃≧TBB>- 41℃               |
| ow    | <b>o</b> w | OW (Off White)           | + 9℃≧T <mark>B</mark> B>- 30℃ |
| www.c |            | WMG (Warm Medium G       | Gray) TBB>+9℃                 |

TBB: equivalent Black Body Temperature





# **Dvorak technique - Eye pattern -**

#### Step-1

Determination of cloud pattern using IR imagery



Hot spot exists around at the center of cloud system U Eye pattern

#### Step-2

Determination of TC center

Eye pattern (except for banding eye pattern)



The cloud system center (CSC) is determined as the center of EYE using infrared image.

The accuracy of eye determination is obtained by measuring the maximum diameter of the eye.

#### Step-3

Determination of Digital T-number (DT number)



- (i) E (eye)-number is estimated by measuring the thickness of eyewall.
- (ii) Eadj (Eye adjustment) is computed based on the eye temperature and feature.

E-number + Eadj = DT number

# **Dvorak technique - Eye pattern -**

#### Step-4: MET-number

The difference in T number in the previous 24-h is estimated by comparing the present image with the image 24 h before. 24-h before



If a TC is judged to rapidly intensity during the previous 24 h,

MET-number (current) = MET-number (24 h before) +1.5

#### Step-5: PT-number

PT-number is determined as the value between +/-0.5 from the MET-number.



#### Step-6: Final T-number

The final T-number is determined by selecting the most proper T-number among the three ones (DT, MET, PT).

The CI number is determined from T-number considering the TC life stage.

Development phase: CI-number = T-number Decay phase:

Cl-number = T-number-1.0 (until 12 h after the start of decay)

## **Objective estimation of DT-number by CLOUD**

- ✓ Objective TC intensity estimation scheme, named "CLOUD", enables to objectively compute DT number based on TC cloud pattern (Curved band, CDO, EYE, etc.) obtained from IR brightness temperature by Himawari-8.
- ✓ RSMC Tokyo started to use the objective DT number in 2014 for the real-time TC intensity analysis.

#### Curved Band pattern:

The DT number for Curved Band is estimated ba sed on the length of curved band consisting of C B clusters, which surrounds the TC center.

#### Eye/Embedded pattern:

The DT number for Eye/Embedded pattern is estimated based on the brightness temperature of the eye and CB cluster surrounding the TC center.



Kishimoto et al. (2014), RSMC Tokyo Technical Review http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/techrev/text15.pdf

# **Estimation of TC intensity from CI-number**

The forecaster obtains maximum sustained wind (MSW) and central pressure from the CI number.



## Early stage Dvorak Analysis (EDA)

- Early stage Dvorak Analysis (EDA) is a subjective technique to estimate the intensity of tropical disturbance during the early developing stage.
- TC forecasters refer to CI number from EDA for judging whether it upgrades to TS intensity.



Kishimoto 2008, https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/techrev/text10-1.pdf

## EDA is conducted every 6 hours (at 00, 06, 12, and 18 UTC)

- 1. If the cloud system develops in the previous 6 h, the present T-number is computed as the previous T-number plus 0.5.
- 2. If the cloud system does not change in the previous 6 h, the present Tnumber is equal to the previous T-number.
- 3. If the cloud system decays in the previous 6 h, the present T-number is computed as the previous T-number minus 0.5.



T-number = 0.0

T-number = 2.0

When T-number reaches 2.0, the forecasters consider if the cloud system should be upgraded to the category of Tropical Storm (TS; 34 kt < MSW).

# 50-kt wind radius

The forecaster estimates 50-kt wind radius based on the table between Maximum Sustained Wind (MSW) and 50-kt wind radius, and the size of central dense overcast (CDO).

# The relationship between MSW and 50-kt wind radius

#### 招組 細身 風速 type FT 中心気圧 tvpe 基風域 250 標准 太目 hPa kt nm 超大 35 诵常 998 998 通常 0 L NN 诵常 40 通常 12 996 996 0 0 風半径 45 通常 24 992 992 通常 0 0 50 通常 990 诵常 0 0 48 990 72 55 诵常 985 通常 30 30 985 通常 980 96 60 980 通常 40 40 65 975 45 120 Estimation of TC 50-kt wind radius

Measurement of dense cloud area such as Central Dense Overcast

# Estimation of 30-kt wind radius

The forecaster estimates 30-kt wind radius using sea surface winds derived from the microwave scatterometer observations and Sea surface winds based on Himawari-8 AMVs (ASWinds).

Sea surface winds from microwave scatterometer observations (MetOp, etc.)



#### Sea surface winds estimated from Himawari-8 AMVs (ASWind)



Estimation of 30-kt wind radius

# Correction to TC center estimation using in-situ and satellite MW observations

The first guess of TC center is given by Dvorak technique. Then, it is modified subjectively by using in-situ observations which are obtained from meteorological reports.



## **Tropical cyclone forecast**

- RSMC Tokyo issues 5-day forecasts for tropical cyclone (TC) track, intensity and other elements for TCs in the responsibility region.
- ➤ Targets are (1) Named TC (maximum wind speed ≥ 34 kt) and (2) TD (maximum wind speed < 34 kt) expected to reach Tropical Storm intensity (MSW ≥ 34 kt) within 24 hours.</p>
- ➤ TC advisory for 5-day forecast is issued at 00, 06, 12, and 18 UTC.

| 5-day forecast               |                                                                                                                                                                                                                      |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Configuration                | <ul> <li>The center and radius of forecasted TC</li> <li>Moving speed and direction</li> <li>Central pressure</li> <li>Maximum sustained wind (MSW)</li> <li>Maximum gust wind</li> <li>50-kt wind radius</li> </ul> |  |  |  |
| Time for issuing<br>Advisory | 120-h (5-day) forecast: 00, 06, 12, 18 UTC<br>24-h (1-day) forecast: 03, 09, 15, 21 UTC                                                                                                                              |  |  |  |

## **JMA HP**

#### https://www.jma.go.jp/bosai/#lang=en



#### **Contents:**

- Center position
- Moving speed and direction
- Central pressure
- Maximum sustained wind
- Maximum gust wind
- 70% probability circle of center position forecast
  - Storm warming area (50kt <)

| 12201(Malakas)                        |                  |  |
|---------------------------------------|------------------|--|
| Issued at 2022/04/11 06:50 UTC        |                  |  |
| Forecast at 04/14 06                  | UTC              |  |
| Category                              | TY               |  |
| Intensity                             | Strong           |  |
| Contor of probability airola          | N21°35'(21.6°)   |  |
| Center of probability circle          | E137°25'(137.4°) |  |
| Direction and speed of movement       | NNE 15km/h(9kt)  |  |
| Central pressure                      | 960hPa           |  |
| Maximum wind speed near the center    | 40m/s(75kt)      |  |
| Maximum wind gust speed               | 55m/s(105kt)     |  |
| Radius of probability circle          | 260km(140NM)     |  |
| Storm warning area                    | WIDE410km(220NM  |  |
|                                       | N N              |  |
| · · · · · · · · · · · · · · · · · · · |                  |  |
| T2201(Malakas)                        |                  |  |
| Issued at 2022/04/11 06:50 UTC        |                  |  |
| Forecast at 04/15 06                  | UTC              |  |
| Category                              | TY               |  |
| Intensity                             | Strong           |  |
| Center of probability circle          | N26°40'(26.7°)   |  |
|                                       | E140°30'(140.5°) |  |
| Direction and speed of movement       | NNE 30km/h(15kt) |  |
| Central pressure                      | 970hPa           |  |
| Maximum wind speed near the center    | 35m/s(65kt)      |  |
| Maximum wind gust speed               | 50m/s(95kt)      |  |
| Radius of probability circle          | 370km(200NM)     |  |
| Storm warning area                    | WIDE500km(270NM) |  |
|                                       |                  |  |
| T2201/Malakas)                        |                  |  |
| Issued at 2022/04/11 06:50 LITC       |                  |  |
| Eprocest at 0//16 06                  | UTC              |  |
| Catagoni                              | ete              |  |
| Category                              | 515              |  |
| Intensity                             | -                |  |
| Center of probability circle          | N32-10 (32.2-)   |  |
|                                       | E147'50(147.6')  |  |
| Direction and speed of movement       | NE 40km/h(21kt)  |  |
| Central pressure                      | 980hPa           |  |
| Maximum wind speed near the center    | 30m/s(55kt)      |  |
| Maximum wind gust speed               | 40m/s(80kt)      |  |
| Radius of probability circle          | 520km(280NM)     |  |
| Storm warning area                    | WIDE600km(330NM  |  |

#### *3-day forecast*

4-day forecast

5-day forecast

# NWP models provide basis for TC forecast





Annual mean position errors in 24-, 48-, 72-, 96- and 120-hour operational track forecasts



Annual mean improvement ratios in 24-, 48-, 72-, 96- and 120-hour operational track forecasts (against CLIPER)



Figure 4.2 Annual mean improvement ratios in 24-, 48-, 72-, 96- and 120-hour operational track forecasts

https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/annualreport.html



Annual mean RMSE of official central pressure forecast

# Annual mean RMSE of official maximum wind speed forecast



https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/annualreport.html

# **TC Track Forecast**

- Track forecasts by the ensemble prediction system provide a good measure of the uncertainty and level of confidence.
- The forecast track averaged over multiple NWP results (consensus) generally has a better performance than individual forecasts.

#### Ensemble forecast by JMA Global Spectral model (GSM)



Track forecasts for T1824(TRAMI) from JMA ensemble forecast. Initial at 12UTC on Sep. 24, 2018.

# <section-header><section-header>

Track forecasts for T1824(TRAMI) from numerical weather forecast centers of Japan, China, Korea, the US, Canada, Germany, Britain and Europe. Initial at 12UTC on Sep. 24, 2018.

## **GSM Ensemble track forecast**

Forecasters need to know the degree of uncertainty and level of confidence.
Track forecasts by the ensemble prediction system provides a good measure.



Track forecasts for T1824(TRAMI) from JMA ensemble forecast. Initial at 12UTC on Sep. 24, 2018.



Track forecasts for T1825(KONG-REY) from JMA ensemble forecast. Initial at 12UTC on Oct. 2, 2018.

#### JMA models for TC Forecast

|              | Models                                                                 | Forecast Range                                   |
|--------------|------------------------------------------------------------------------|--------------------------------------------------|
| Global Model | T <sub>L</sub> 959 L128<br>about 20 km in horizontal                   | up to 132h (00,06,18UTC)<br>up to 264h (12 UTC)  |
| Global EPS   | T <sub>Q</sub> 479 L128, 51 members<br><i>about 27km in horizontal</i> | up to 132h (06, 18UTC)<br>up to 264h (00, 12UTC) |

## 70% probability circle of TC center position forecast



Fukuda and Yamaguchi (2019), Tokyo Technical Review

## TC intensity forecast by Typhoon Intensity Forecast Scheme (TIFS)

- A guidance that predicts typhoon intensity on dynamical and statistical basis using multiple linear regression.  $y = a_0 + a_1 x_1 + \cdots + a_N x_N$ y: prediction,  $x_i$ : explanatory factors,  $a_i$ : coefficients - TIFS predicts central pressures or maximum wind speeds up to 132 hours ahead at interval of 6 hours. Explanatory factors include : initial typhoon intensity maximum potential intensity SSTs and ocean heat content cloud top temperatures vertical wind shear, divergence, water vapor, vorticity, temperature Atmospheric factors are derived from the GSM forecasts TIFS is an adaptation from "SHIPS", which was originally developed by Dr. Mark DeMaria, NOAA/NHC, for hurricane predictions in the Atlantic.

## **Essential explanatory factors for TIFS**

| Variable name    | Description                                                                    |
|------------------|--------------------------------------------------------------------------------|
| PERSISTENCE      | Change in max sustained wind during the last 12 hours                          |
| SHEAR            | Vertical wind shear between 200 and 850hPa levels                              |
| POTENTIAL        | Difference between the latest TC intensity and its maximum potential intensity |
| TANGENTIAL       | Tangential wind speed around the TC at 850hPa level                            |
| MAXWIND          | The latest max sustained wind                                                  |
| TEMP200, TEMP250 | Temperature at 200 and 250hPa                                                  |
| MID_RH           | Relative humidity in the mid-troposphere                                       |
| VOR850           | Vorticity at 850hPa                                                            |
| DIV200           | Divergent at 200hPa                                                            |
| MOTION           | Zonal component of translation speed of the TC                                 |
| ОНС              | Ocean heat content                                                             |
| IR               | Portion of cloud area with infrared irradiance below -30°C                     |

### **Computation of explanatory factors**

Atmospheric explanatory variables are determined by areaaveraging GPVs from GSM over the vicinity of the predicted positions of the TC center.





Atmospheric environmental parameter at FT=24 = Average of representative values of FT=0, 6, ..., 24.

## TC intensity forecast by TIFS

TIFS forecasts Maximum sustained winds (MSWs) and central pressures 12, 24, 48, 72, 96, 120 h after the initial time TIFS (Ono et al., 2019)

https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/techrev/text21-2.pdf



TC intensity forecasts by other NWP model, e.g., HWRF

## Forecast of 50-kt wind radius

The forecaster predicts 50-kt wind radius based on MSW forecast and TC size.

Statistical relationships between MSW and 50-kt wind radius for different TC sizes





## TC activity prediction for TC genesis

For Typhoon Committee members, Tropical Cyclone Activity Prediction (TCAP) is calculated as a percentage of ensemble members of the four EPSs in which TC-like vortices exist between 25° N and 0° at the start of forecast periods.

http://journals.ametsoc.org/doi/pdf/10.1175/WAF-D-14-00136.1



0 - 2 days

0 - 5 days

Multi- NWP center grand ensemble (JMA, ECMWF, UKMO, NCEP)

# End

