2005

Furricense Structure: Theory and Diagnosis

7 Narch, 2016
World Deteorologjical Organjzation Workshop

Conris Lanidsea

Chris.Lanidsea@mioar.gov

 National Furricarne Center, Miami
Outline

-Structure of Hurricanes - Dynamical and thermodynamical
-How is size defined and measured?
-Exercise: Analyze size (50 kt winds)

THE WARM CORE IS A CONSEQUENCE OF BOTH LATENT HEAT RELEASE AND WARMING BY SUBSIDENCE

OUTFLOW

THE WARM CORE IS A CONSEQUENCE OF BOTH LATENT HEAT RELEASE AND WARMING BY SUBSIDENCE

OUIFLOW

Fig. 2.4b. Low-level (950 mb) isotaclis (kl) in Hurricanc Incz (1966) (Ilawkins and Imbembo, 1976).

NOTE CYCLONIC CIRCULATION AT UPPER-TROPOSPHERIC LEVEL, WITHIN A FEW DEGREES RADIUS OF THE CENTER!
Fig. 4. Analysis of wind (streamlines and isotachs) on meshes 1 3 for (a) 850 , (b) 500 , and (c) 200 mb . Isotachs are at $5 \mathrm{~m} \mathrm{~s}^{-1}$ intervals. Shading indicates wind speeds greater than $60 \mathrm{~m} \mathrm{~s}^{-1}$.

BEYOND A FEW DEGREES RADIUS FROM THE CENTER, THE UPPER-TROPOSPHERIC FLOW TURNS ANTICYCLONIC

Fig. 5. Analysis of wind (streamlines and isotachs) for meshes 6 7 for (a) 850 , (b) 500 , and (c) 200 mb . Isotachs are at $5 \mathrm{~m} \mathrm{~s}^{\sim 1}$ intervals. Shading in (a) indicates area of tropical storm force winds ($17.5 \mathrm{~m} \mathrm{~s}^{-1}$), and in (c) areas with winds greater than $15 \mathrm{~m} \mathrm{~s}^{-1}$.

TOTAL
hURricane "CARLA"

2110Z-1735Z JUNE 22. 1968

1435z-1625z AUGUST 20. 1969

FIG. 2. Total streamlines and isotachs (m sec
and isotachs $\left(\mathrm{m} \sec ^{-1}\right)$, right, for hurricane Carla, tropical storm Candy and hurricane Debbie. The range circles are at 2° latitude radius intervals. The arrow indicates the direction of storm motion.

INTENSIFYING

NON-INTENSIFYING

Fig. 2.17 Differences between the outflow and upper-level asymmetries of intensifying and nonintensifying hurricanes (Merrill 1988b).

Effects of Verticall Wind Shear ($\mathbf{V}_{\mathbf{z}}$) on Tropical Cyclones

WEAK SHEAR = FAVORABLE

STRONG SHEAR = UNFAVORABLE high clouds

low clouds

INTENSE WARM CORE: CAN BE

 16 K WARMER THAN NORMAL TROPICAL VALUES

DEEP-LAYER CYCLONIC CIRCULATION

Fig. 2.6. Vertical cross section of tangential winds $\left(\mathrm{m} \mathrm{s}^{-1}\right)$ for the Pacific composite typhoon (Frank, 1977a).

Fig. 2.14. Vertical cross section of vertical motion (mb day ${ }^{-1}$) in mean typhoon (Frank, 1977a).

FIG. 2.5. Vertical cross section of radial winds ($\mathrm{m} \mathrm{s}^{-1}$) for the western Atlantic composite hurricane (Gray, 1979).

THE MASS (PRESSURE, HEIGHT) AND WIND FIELDS OF A TROPICAL CYCLONE ARE IN NEAR-GRADIENT OR (IN THE INNER CORE REGION) NEAR-CYCLOSTROPHIC BALANCE

RELATIONSHIP BETWEEN MINIMUM CENTRAL PRESSURE AND MAXIMUM WIND: IS THERE A UNIVERSAL ONE? MAYBE, IF ENVIRONMENTAL PRESSURE AND SIZE IS TAKEN INTO ACCOUNT

WILLOUGHBY SUGGESTED THE FOLLOWING FORMULA:

IF WE ASSUME AIR DENSITY TO BE ABOUT $1.17 \mathrm{~kg} / \mathrm{m}^{3}$, THEN WE HAVE:

$$
v_{m}=\sqrt{0.57\left(p_{\infty}-p_{c}\right)}
$$

IN THE CASE OF HURRICANE ANDREW, WHEN IT HIT NEAR MIAMI, THE CENTRAL PRESSURE WAS 922 mb. IF WE ASSUME AN ENVIRONMENTAL PRESSURE OF 1016 mb , WE HAVE:

$$
\begin{aligned}
& =73 \mathrm{~m} / \mathrm{sec} \\
& =141 \mathrm{knots} \\
& =262 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

COMPREHENSIVE

PRESSURE-WIND RELATIONSHIP

MAXIMUM WIND = 18.633 $-14.960 \times$ SIZE
-0.755xLATITUDE
-0.518x(ENV.-CENTRAL PRESSURE)
+9.738x(ENV.-CENTRAL PRESSURE)**0.5
$+1.5($ SPEED $) * * 0.63$
For example, a small RMW TC with a central pressure of 963 mb in the lower latitudes (with average environmental pressure and translational velocity) would suggest a windspeed of 100 kt , while a large RMW TC with a central pressure of 948 mb in high latitude would also suggest also a maximum wind of 100 kt .

THE TANGENTIAL WIND PROFILE OF A TC MAY BE APPROXIMATED BY A MODIFIED RANKINE VORTEX:

$$
v r^{x}=\text { constant } \quad r \geq \text { RMW; }
$$

Fio. 2.8. Radial profiles of Inhgential wind speed $\left(\mathrm{m} \mathrm{s}^{-1}\right)$ and D values (departure of isobaric height from reference value) in Ilurrlcanc ^nita. Also shown are graphis $V_{0} r^{x}$ - constant for values of $x-0.5$ and 0.6 .

THE TANGENTIAL WIND PROFILE OF A TC MAY BE APPROXIMATED BY A MODIFIED RANKINE VORTEX:

Fio. 2.8. Radial profiles of Inhgential wind speed $\left(\mathrm{m} \mathrm{s}^{-1}\right)$ and D values (departure of isobaric height from reference value) in Ilurrleanc Anita. Also shown are graphis $V_{0} r^{x}-$ constant for values of $x-0.5$ and 0.6 . (Shects, 1980).

Rankine Vortex, $\mathbf{V}=\mathbf{V m a x}(\operatorname{Rmax} / \mathbf{R})^{\wedge} \mathrm{x}$, for $\mathrm{R}>\operatorname{Rmax}$
(Vmax = 100 kt, Rmax $=25 \mathrm{~km}, \mathrm{x}=0.5$)

Concentric Eyewall Cycle - from microwave satellite imagery (Hernan)

Concentric Eyewall Cycle
 Tangential winds (Gilbert)

Black \& Willoughby (1992)

CENTRAL PRESSURE VS. TIME FOR HURRICANE ALLEN, 1980: LARGE FLUCTUATIONS LARGELY DUE TO EYEWALL REPLACEMENT CYCLES

Fig. 3. Hurricane Allen: graph of minimum sea level pressure as a function of time, based on 44 aircraft observations.

Natures Mosi Powerfil Stormeu

Tropical Cyclone Size Lifecycle

Size versus Intensity

Kimball and
Mulekar (2004)
a)

b)

c)

Radius of Tropical Storm Force Winds

 versus LocationKimball and
Mulekar (2004)

Tropical
 Cyclone versus Extratropical Cyclone:
 Non-frontal versus frontal
 (Hart 2003)

)
0

Hurricane Floyd: 12Z14SEP1999 1.0º NOGAPS Analysis
(a)

900-600hPa
Thickness
$B=2 \mathrm{~m}$
3510
3490

Cleveland Superbomb: 06Z26JAN1978 2.5° NCAR Reanalysis
(b)
\qquad

Cyclone Phase Space for Bill

Diagnosing Size...

Katrina August 24

Dvorak is very useful for position and intensity, but does NOT provide size estimates.

Tropical Cyclone Wind Radii

How big is the storm?
-NHC estimates cyclone "size" via wind radii in four quadrants

-Wind radius = Largest distance from the center of the tropical cyclone of a particular sustained surface wind speed threshold (e.g., 34, 50, 64 kt) somewhere in a particular quadrant (NE, SE, SW, NW) surrounding the center and associated with the circulation at a given point in time

Limitations of Four-Quadrant Radii

Data to Determine Tropical Cyclone Size

- Satellite Imagery
- Geostationary
- Polar-Orbiting
- Mierowave
- Scatterometer

5 Reconnaissance Data

- Dropsondes

〕 STMMR (Stepped
Frequency Microwave Radiometer)

- Surface Observations

A Typical Day in 2016 Marine Data Available around 12 UTC

Satellite winds for nearby environment and TC size

Geostationary satellite -Low-level cloud drift winds

Low-Darth-Orbit Satellites

- Carry microwave imagers and sounders that can see through cloud tops and reveal the structures underneath
- Gaps in instrument coverage between orbits, which causes irregular sampling of cyclones

[^0]Microwave location, structure, fitensity, rainfall

201109 L 2011
AMSU-A Channel $7(54.94 \mathrm{EHz})$ Brightness Temperature (c) 0227 Time: 1832 UTS
NOA4-18

Max Tb: -37.2295 c
Contaur Interval $=1 \mathrm{C}$

Advanced Microwave Sounding Unit

$201109 L$ MMDD: DA27 YEAR: 2011 Time(UTC): 1342 NOMA-16
AMSU-A Brightness Temperoture Anomaly (Storm Center-Environment)
Vertical red line indicates aprox locotion of TC/Inves Aprox lotitude of cross section is 34.44

AMSU Size Recommendations

Given the skill
in the AMSU size estimates and the frequent lack of other tools, its use is recommended in the absence of aircraft reconnaissance

* Considerations in its use:
\& 34 kt radii too small, 64 kt too large - can adjust by $\sim 20 \%$
* AMSU is too round - make right front quad larger by $\sim 20 \%$, make left rear quad smaller by $\sim 20 \%$
\& AMSU method does not have enough sensitivity - smallest TCs aren't small enough, largest TCs aren't big enough
\& Can weight the AMSU 34 kt and 50 kt radii more for hurricanes than tropical storms
Can weight the AMSU 64 kt radii more for major hurricanes than Category 1 and 2 hurricanes

ASCAT (Advanced Scatterometer) - Surface Winds from a Polar-orbiting satellite

Rain Contamination with scatterometer data

Deg, C
-110.

FFFFFFFFFX
NFFFFFFFFFF
FFFHFFFFFFFFF
FFFF FFF FFF

 FFFFFFFFFA
PFEEFFFFFFI
prffffi

Brennan et al. 2009

Hurricane Reconnaissance and Surveillance Aircraft (10 Air Force C-130s, 2 NOAA P3s, 1 NOAA

G-IV)

Primary Aircraft Data

Winds (along the aircraft track and dropsondes)

- Surface pressures (extrapolated and dropsonde)
- Surface winds from the Stepped Frequency Microwave Radiometer
- Aircraft Doppler Radar winds (rrom the P-3"s)

CPS Dropsondes

Measures the wind around and in hurricanes from the aircraft to the ocean's surface

Franklin and Black (1999)

Surface wind analyses using flight level winds

Table 2.
Reduction factors and flight-level wind thresholds for determining wind radii from 700 mb data.

Sample	RF10m	FLW64 (kt)	FLW50 (kt)	FLW34 (kt)
Eyewall	0.90	70	55	-
Outer vortex	0.85	75	60	40
Outer vortex / Right quad	0.75	85	65	45
Outer vortex / Left quad	0.90	70	55	40

2ror

Alarge sample of GPS dropsondes in the inner core of TCs provides a way to determine surface wind radii from flight level winds via the mean wind profile

Remotely Sensed Surface Winds

 C-Band Scatterometer (5.6 Ghz) and Stepped-Frequency Radiometer (4-7 GHz)

AMSU ALO710 2010 SEPO3 00Z

IRWD AL0710 2010 SEP03 00Z

AMSU

Multiplatform Satellite Surface Wind Analysis CIRA

Infrared

AL0710
EARL 20103 Sep 00UTC

Multiplatform Satellite
 Surface Wind Analysis CIRA

Automated Surface Wind Field in Tropical Cyclones

Surface Wind Field

Surface Wind Field of Hurricane Ike

Sustained Winds as of 1000 AM CDT Thu Sep 11, 2008 Advisory Number 42

Wind Radii Forecast "Guidance"

- Empirical ideas
- Is the storm strengthening or weakening?
- Is persistence appropriate, or are conditions changing?
- Is the storm becoming extratropical, causing wind field to expand?
- Will all or part of the circulation be passing over land, such that radii could decrease?
- Is the system accelerating, such that the storm could become more asymmetric?
- Guidance is essentially limited to climatology and persistence (CLIPER) models
- Occasionally can use dynamical models (not yet fully tested and verified for radii)

2005

Furricense Structure: Theory and Diagnosis

7 Narch, 2016
World Deteorologjical Organjzation Workshop

Conris Lanidsea

Chris.Lanidsea@mioar.gov

 National Furricarne Center, MiamiTC Intensity Analysis Exercise RA-IV Workshop, 7 March, 2016

What is the quadrant based (NE, SE, SW, NW) estimate of the farthest extent in nautical miles of 50 kt winds?

Answer will be in the format of:

$$
50 \text { kt (} 70 \text { NE, } 100 \text { SE, } 80 \text { SW, } 30 \text { NW) }
$$

Ingrid
Sep. $14^{\text {th }}, 18 Z$

CIRA AMSU:

50 kt (49 NE, 52 SE, 44 SW, 42 NW)

65 kt intensity

lagrid - Sep. $14^{\text {th }}, 18 Z-65$ kt intensity
Visible and infrared imagery, in situ obs, AMSU
What is the quadrant based (NE, SE, SW, NW) estimate of the farthest extent in nautical miles of 50 kt winds?
$50 \mathrm{kt}\left(_\quad \mathrm{NE}, \ldots \mathrm{SE}, \ldots \mathrm{SW}, \ldots \mathrm{NW}\right)$

ASCAT pass -
Red - 34 kt

lingrid - Sep. $14^{\text {th }}, 18 Z-65$ kt intensity
Visible and infrared imagery, in situ obs, AMSU, and ASCAT

What is the quadrant based (NE, SE, SW, NW) estimate of the farthest extent in nautical miles of 50 kt winds?

$$
50 \mathrm{kt}\left(_\quad \mathrm{NE}, \ldots \mathrm{SE}, \ldots \mathrm{SW}, \ldots \mathrm{NW}\right)
$$

Ingrid

Sep. $16^{\text {th }}, 00 Z$
70 kt intensity

100 nm

Aircraft Reconnaissance:
Flight level winds (700mb) - Pink SFMR - black

8 N
lagrid - Sep. $16^{\text {th }}, 00 Z-70$ kt intensity
Visible and infrared imagery, in situ obs, and aircraft reconnaissance

What is the quadrant based (NE, SE, SW, NW) estimate of the farthest extent in nautical miles of 50 kt winds?

$$
50 \mathrm{kt}\left(_\quad \mathrm{NE}, \ldots \mathrm{SE}, \ldots \mathrm{SW}, \ldots \quad \mathrm{NW}\right)
$$

[^0]: $\Pi^{-38.0}$

