

The Dvorak Technique

JACK BEVEN NATIONAL HURRICANE CENTER

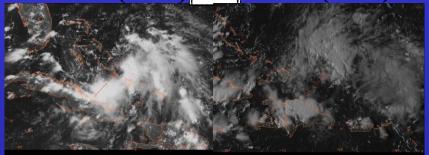
WHERE AMERICA'S CLIMATE AND WEATHER SERVICES BEGIN

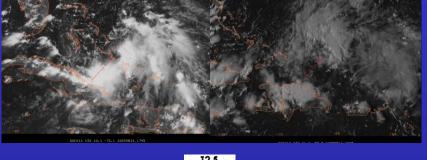
What is the Dvorak Technique?

- A statistical method for <u>estimating</u> the intensity of tropical cyclones (TCs) from interpretation of satellite imagery
- Uses regular Infrared and Visible imagery
- Based on a "measurement" of the cyclone's convective cloud pattern and a set of rules
- It is used at tropical cyclone warning centers around the world

What the Dyorak Technique isn't

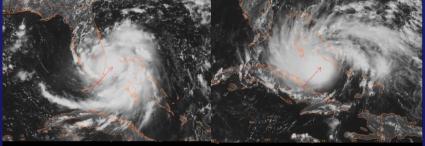
- A <u>direct measurement</u> of wind, pressure, or any other meteorological variable associated with a tropical cyclone!
- A replacement for *in situ* measurements of a tropical cyclone

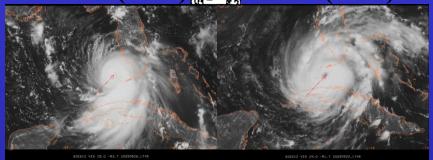

Dvorak Technique Premise

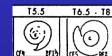


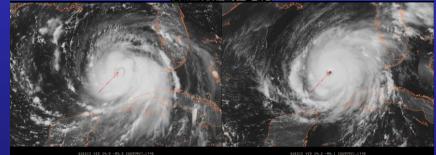
• There is a (imperfect) correlation between the intensity of a TC and its satellite observed cloud pattern during both development and decay.

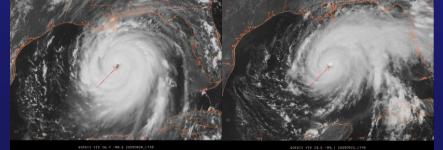
TC Cloud Patterns - Developing





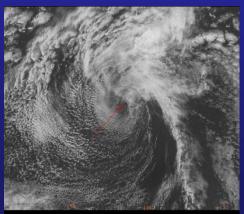


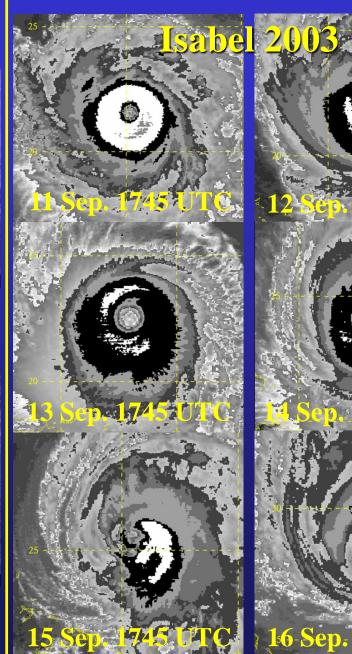


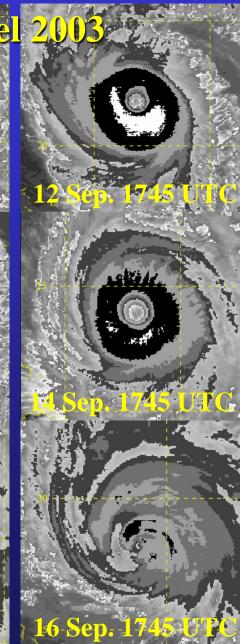


TC Cloud Patterns - Weakening

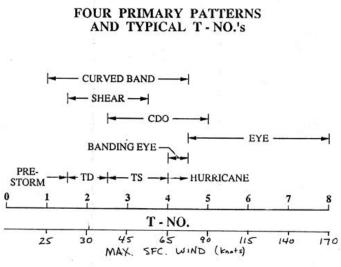
Hector 2006


19 Aug. 2100 UTC




20 Aug. 2100 UTC

21 Aug. 2100 UTC 22 Aug. 2100 UTC



Dvorak Technique Cloud Patterns

- Curved Band (VIS and IR)
- Shear (VIS and IR)
- Eye (VIS and IR)
- Central Dense Overcast (VIS)
- Embedded Center (IR)
- Central Cold Cover (VIS and IR)

The state of the s				•			-
DEVELOPMENTAL PATTERN TYPES	PRE STORM	TROPICAI	STORM (Strong)	HURRICA (Minimal)	NE PATTE	RN TYPES (Super)	
	T1.5 ±.5	T2.5	T3.5	T4.5	T5.5	T6.5 - T8	1
CURVED BAND	2	2	2	O , ,	GFN BFIS	(ES) NO.	
CURVED BAND EIR ONLY	63		9	9	05 OF 15	CTS by BF 1	
CDO PATTERN TYPE	2	9	2		(55) (55) (57)	(F 6 SF1	o O
SHEAR PATTERN TYPE	;s)	2	5		EYE	TYPES	350

T-Numbers: How to Quantify the Cloud Patterns

- The Dvorak Technique quantifies TC intensity on a 1-8 scale (at 0.5 intervals) called T-Numbers, which are used in a variety of ways.
- The final output of the technique is the Current Intensity (CI) number.
- The CI number is driven by the Final-T (FT) Number.
- In turn, the FT is driven by the Data-T (DT) number, the Model Expected-T (MET) number, and the Pattern-T (PT or PAT) number.
- The DT is often created from other sub-numbers.

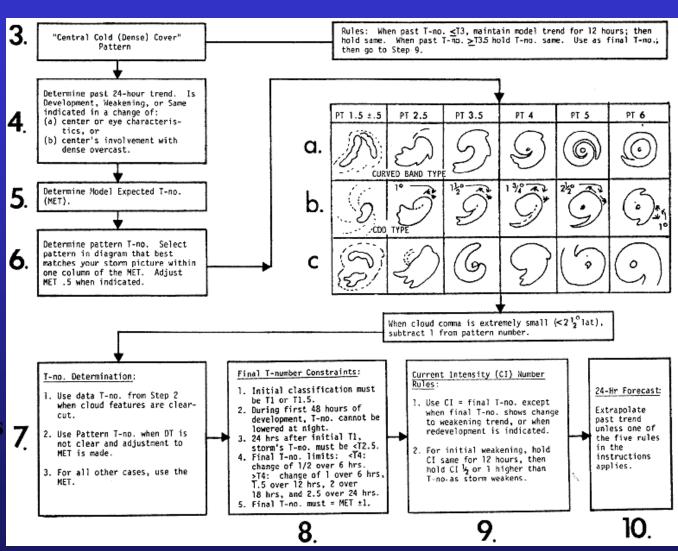
Dvorak Technique Output

		1-minu	ute MSW		NHC/CP	HC/JTWC
CI					MSLP	MSLP
Number	(kt)	(mph)	(km/ hr)	(m/s)	(ATL/EPAC)	(NW Pacific)
1.0	25	29	46	13		
1.5	25	29	46	13		
2.0	30	35	56	15	1009 mb	1000 mb
2.5	35	40	65	18	1005 mb	997 mb
3.0	45	52	83	23	1000 mb	991 mb
3.5	55	63	102	28	994 mb	984 mb
4.0	65	75	120	33	987 mb	976 mb
4.5	77	89	143	40	979 mb	966 mb
5.0	90	104	167	46	970 mb	954 mb
5.5	102	117	189	52	960 mb	941 mb
6.0	115	132	213	59	948 mb	927 mb
6.5	127	146	235	65	935 mb	914 mb
7.0	140	161	259	72	921 mb	898 mb
7.5	155	178	287	80	906 mb	879 mb
8.0	170	196	315	87	890 mb	858 mb

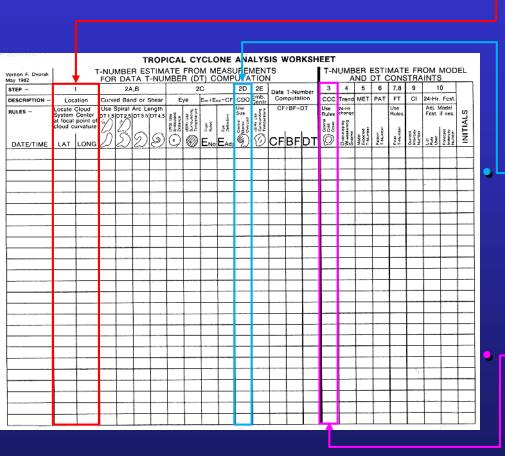
Note: Other warning centers and basins use different pressures and wind averaging periods

Dvorak Technique Procedure

Dvorak (1984) 10 Steps:


- Locate center
- 2. Select cloud pattern and assign Data-T Number (DT)

Dvorak Technique Procedure


Dvorak (1984) 10 Steps:

- 3. Central Cold Cover (CCC; if applicable)
- 4. Analyze 24-h trend
- 5. Assign Model Expected T-Number (MET)
- 6. Assign Pattern T-Number (PT/PAT)
- 7. Use DT, MET, and PT to get Final T-Number (FT)
- **8. Apply FT constraints**
- 9. Determine Current Intensity (CI)
- 10. Forecast 24-h Intensity (FI)

Dvorak Technique Worksheet

ejn verstjorne og det e	TROPICAL CYCLONE ANALYSIS WORKSHEET																							
Vernon F. Dvorak May 1982		Ŧ	r-NU FOF	MBE 3 DA	R ES	STIM/ C-NU	ATE MBE	FRO R (D	M M T) C	EASI	URE!	MENT	rs N			T-N	UMB A	ER I	ESTII DT_(MAT	E FR	OM N	MOD!	EL_
STEP -	-	1			A,B				2C		2D	2E	1	T-Nun	mber	3	4	5	6	7,8	9	10		
DESCRIPTION -	Loc	cation	Curv	ed Ban	nd or	Shear	ε	ye	Em+E	.a₁=CF	CDO	Emb. Centr	LCom	mputati		ccc	Trend	MET	PAT	FT	CI	24-Hr.	Fest.	
RULES	Locate (Cloud	Use !	Spiral	Arc L	ength		. 25			Use	5.5		+BF=D	ōΤ	Use Rules	24-Hr change			Use Rules		Adj. M Fost. i		(g)
	System at focal	Center I point of curvature	DT 1.51	DT2.51	DT 3.5	DT 4.5	(VIS) Use Embedded Distance	IEIRi Use Surrounding Temperature		Eye Definition	E 4 8	dend dend	1		•			2	'	Hules		Puba	neu.	AF.
	cloud cr	urvature/	141	14	$\left \right\rangle$		255 255 255	98.5	Programme 2	28	308	997				Contral Cover	velop Street	2 8	3 8	å	E 10 2	1 1	15 A 10	INITIALS
DATE/TIME	1 1	1 1	1/11	(2)	12)	(0)	10	0	ENO	EAd	Central	Surconding Temperature	CF	BF	DT	0	030	Model Expected T-Number	Pattern T.Number	Final T-Number	Ourrent Imensity Number	28.5	Forecast Internsty Number	Z
			-			-																		
	\Box																							
			\Box																					
		-																						
			-																					
				\vdash	\vdash			<u> </u>																
				\vdash	1	\vdash											\vdash							
	\vdash			_							-						\vdash		\Box					
———	\vdash								\vdash		\vdash	\vdash								t				
	-	\vdash	\vdash	\vdash		-			1			\vdash						\vdash						
	-	 	\vdash	\vdash		-		-			\vdash	-			1				\vdash		\vdash			
<u> </u>	 	 	 	 	\vdash	\vdash		-	1			1		\vdash				 	_	1	1			
1	\vdash		\vdash		-	1			\vdash		\vdash	\vdash		\vdash				\vdash	1		\vdash			
	 	_	+	\vdash	 		-	+		1		\vdash	\vdash	\vdash		<u> </u>	 		_	 	\vdash			
		-	 	\vdash	+	\vdash	-	_	+-	_	 	 	\vdash	\vdash	1		<u> </u>		 	\vdash	\vdash	\Box		
	 	-	+	-	_			\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	_			 		\vdash		 			
		+	+-	\vdash	_		<u></u>		1		\vdash	\vdash	-	+-	-			\vdash	\vdash	\vdash	\vdash			
			1	+	\vdash	1	\vdash		1	 - 	1	+	\vdash	\vdash	$\vdash \vdash$	┢	 	_		 	†	\vdash		\Box
		+	+-	+	+-	\vdash	+	\vdash	\vdash	_	+		1		1	-	\vdash		+-	\vdash	7			\sqcap
	+-	+-	+	+	+	+		+-	+	\vdash	\vdash	\vdash	 	+	+	\vdash	+-	+	+	\vdash	 	 		
 			+	+-	+	+-	\vdash	+	+-	-	+	+-		+	+-	⊢	-	+-	+-	┼	\vdash	1		\vdash
	+-	+-	+-	+	+-	+	+-	+-		+	+	+-		+	+	╁	+	+	+	+	+	+		
 	+	-	-	+	+	+	+	+-	+	+	-	\vdash	+-	+-	+'	⊢	\vdash	+	+	\vdash	┼─	1		
				1										Ш.	'ـــــــــــــــــــــــــــــــــــــ	_	1	↓				'	لللل	لــــــا

CSC - Cloud System Center - The center of the disturbance or cyclone. It is usually defined by an eye, a low level circulation center, or by other cloud features.

- covering the CSC, often lying within the curve of the cyclone's curved cloud band.
- - CCC Central Cold Cover A large cold or dense overcast covering the CSC that lacks structure and obscures the cyclone center.

																			•
Vernon F. Dvorak May 1982		T-NUMB FOR D	TROF ER ESTIM ATA T-NU	PICAL CY ATE FRO MBER (D	M MEA	SUREN	/EN	rs	RKSH		UMB A					OM I		EL	
STEP -	1	2	A,B	2	C.	2D	2E	Data T-N	u nber	3	4	5	6	7,8	9	1	0		
DESCRIPTION -	Location	Curved B	and or Shear	Eye	Eno+Eno,=0	F CDO	Emb. Centr	Comput		ccc	Trend	MET	PAT	FT	CI	24-Hr.	Fest.		
RULES - Sy at cle	ocate Cloud ystem Center focal point o oud curvature	Use Spira	Arc Length	Embedded Distance Efficials Surrounding		Use Size Seme	ISIRi Use Suncunding Temperature	CF+BF		Use Rules	24-Hr change M-westerness M-wes		Pattern T.Mumber	Use Rules	Oursell Intersaly Number	Arij. N Fost.	if nec.	INITIALS	
DATE/TIME I	LAT LONG	1/1/2) 2) 9)	0 0	Eno Ea	dj 🧐)	0	CFB	DT	(0)	os.º	Mode Espe	ž.	T-X	Num	Sec.	Poecast Intensity Number	Z	
																			•
						+-			-	H				_	-				
		1				-													
	-	-	+-+-																
											-								
					-					_									
		+		-	1					-									
										-	-					_			

- CI Number Current Intensity number - The final output of the Dvorak technique and the estimated intensity of the cyclone.
- The estimated intensity of the cyclone based on the convective cloud pattern.
- replace the replace of the replace o

					-									VOR	KSH	EET									
fernon F. Dvorak fay 1982		٦	FOF	MBE DA	R ES TA T	TIM.	ATE MBEI	FRO R (D	M M T) C	OMF	UREI	NEN'	18			T-N	IUME A	BER I	DT (CON	STRA	INT	MOD S.	EL	
STEP -		1		2A	,в				С		2D	2E		T-Nur		3	4	5	6	7,8	9	1	0		
DESCRIPTION -		ation		ed Bar						A2)-CF	CDO	Emb. Gentr		nputat		ccc		MET	PAT	FT	CI		. Fcst.		
RULES -	Locate System at focal cloud c	Cloud Center point of urvature	DT 15	Spiral IDT 2.5	Arc L	ength DT 4.5	(VIS) Use Embedded Distance	IEIR) Use Surrounding Temperature	Tight Tight	EAd)	Use Size Size Size Size Size Size Size Siz	Surgarding Temperature	CF	+BF=I	т	Use Rules	24-Hr change		ı	Use Rules		Fost.	Madel if nec.	INITIALS	
DATE/TIME	LAT	LONG	2	۵	2	<u>(a)</u>		0	ENo	EAd	Central	0	CF	BF	DΤ	Rango (C)	O-developing W-westering S-same	Model Expected T-Number	Pattern T.Mumber	Frost T-Number	Ourrent Imprestig	323	Forcast Intensity Number	ž	
																F			L			_			
																						-			
																	-		F			-			
					-																				
						-											-								
				_	_																			_	
									-	_															
						_		_											F		7			_	
				-						-		-	-	-	_	⊢	-				-	\vdash			1
	<u></u>	1	_	i							_		1	<u> </u>	_	L		_	_		_		-		1

- MET Number - Model Expected-T number - The intensity estimate from the 24 hr old FT number and a determined intensity trend.

FT Number - Final-T number - The intensity estimate for a given time selected from the DT, PT, or MET numbers. It is used with a set of rules to determine the CI number for this time and the MET number 24 hours later.

FI Number - Forecast Intensity number - 24 hr intensity forecast based on the CI and observed signals in the cyclone cloud pattern and the environment.

fernon F. Dvorak May 1982		7	-NU FOR	MBE DA	R ES	TIM.	ATE MBE	FRO R (D	M M	EAS	JREN UTA	NENT MOIT	rs I			T-N	UMB A	ER E	STI OT C	MATI	E FR	OM INTS	MOD 3.	EL
STEP -		1		2A	,в			2	С		2D	2E	Date	T-Nur	nber	3	4	5	6	7,8	9	1	0	ĺ
DESCRIPTION -	Loc	ation	Curve	ed Ban	d or :	Shear	Ε	ye	Em+E	,-CF	CDO	Emb. Gentr		nputat		ccc	Trend	MET	PAT	FT	CI	24-Hr	Fest.	
RULES	Locate System at focal cloud c	Cloud Center point of urvature	Use S	Spiral DT2.5	Arc Le	ngth DT 4.5	IVISI Use Embedded Eistance	IEIR) Use Surrounding Temperature	From	equipo HAdj	Use Size	Surgurding Temperature	CF	+BF=I	ΤC	Use Rules	24-Hr change		2	Use Rules			if nec.	INITIALS
DATE/TIME	LAT	LONG	2	<u>Ď</u>	2	<u>(S</u>	0	0	ENG	Ead	S Seminary S S S S S S S S S S S S S S S S S S S	0	CF	BF	DΤ	Reso O	W-west Starra	Model Expected T-Number	Patter. T.Mumber	Final T-Number	Ourrent Impressir	Page Section	Forecast Intensity Number	Ē
																								F
										_												,		
										_														L
				:								-												
							_			_														E
															_									
																					12			
											_	-												L
												1				ı		l						

- Eye Number Part 1 of the intensity estimate for an eye pattern based on surrounding cloud top temperatures (IR) or embedded distance in a CDO (VIS).
- Eye Adjustment Part 2 of the intensity estimate for an eye pattern based on eye temperature (IR) or eye size and clarity (VIS).

vectornos process																									٠,
														VOR	KSH	EET						~			
Vernon F. Dvorak May 1982			FOR	DA	TA T	-NUI	MBE	R (D	T) C	OMP	UTA	TION	1				OMB A	ND I	DT C	ONS	TRA	INTS		EL	,
STEP -	1			2A	,В			2			2D	2E		T-Nur		3	4	5	6	7,8	9		0		
DESCRIPTION -	Locati				d or 5					a,-CF				putat			Trend	MET	PAT	FT	CI		. Fost.		
	Locate Cl System C at focal po cloud cur	enter oint of vature	DISE S	DT25	Arc Le	ongth DT4.5	(n) Embacaded Distance	Surounding Temperature	From Autes	E _{Adj}	Central Can	Sungandang Temperature		BF-I	, DT	Use Rules Rules Co	24-Hr change dudowap-O		Her. Number	Use Rules	urrent nersaly urreer	Fost.	Forcest Action of the control of the	INITIALS	
DATE/TIME	LAT L	.ONG	4	\leq	W	\leq	9	100	ENo:	⊏Adj	2	10	OF.	DI.	יי	(55)	050	201	25	ű.c	052	262	usz.	-	1
																						,			
													_												
																									1
										-	_	-													
														_											
				-														-							
																				-	-				
								_								-		-			4				-
					-											-	-				-	-]
										L	Ļ			Ļ]

- or CF Number Central Feature number The part of the intensity estimate based on the central features of a cyclone. This number is produced by the eye, CDO, and embedded center patterns.
 - BF Number Banding Feature number The part of the intensity estimate based on the banding surrounding central features of a cyclone. This number can be used with the eye, CDO, and embedded center patterns.

Dvorak Steps 1 and 2

START

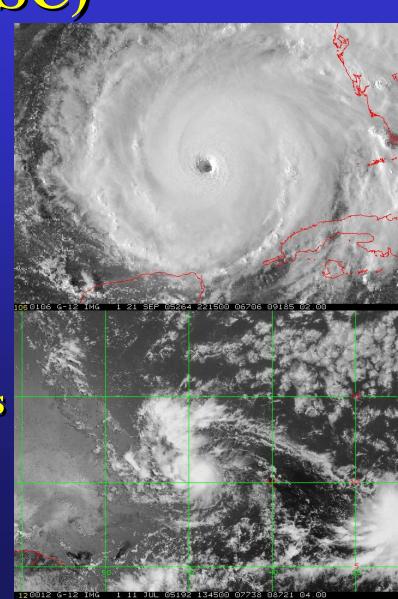
Locate cloud system center (Center fix)

Locate the cloud system center at the focal point of the curved cloud lines or bands. For initial development (T1), see Step 1A.

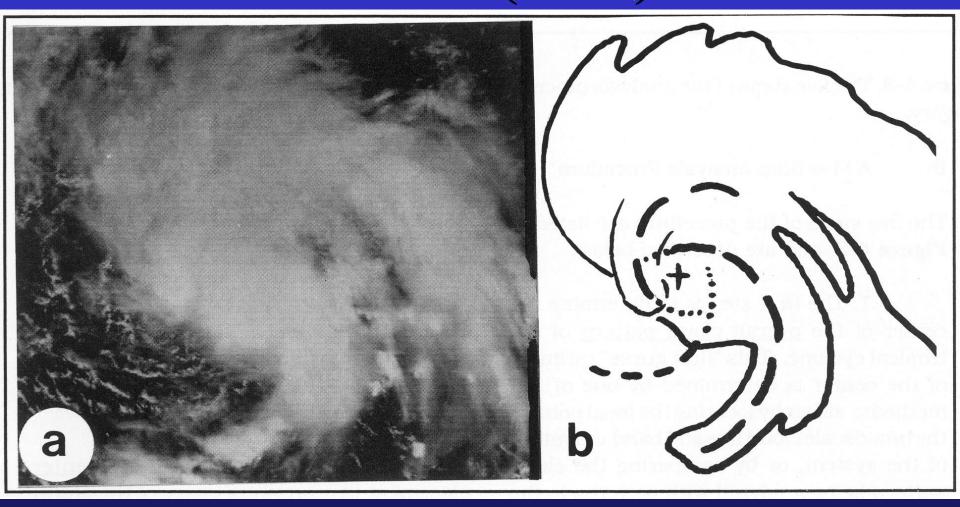
1A.

A T1 Classification can first be given upon meeting three criteria involving the existence and persistence of the CSC and associated convection

CLOUD PATTERN MEASUREMENT

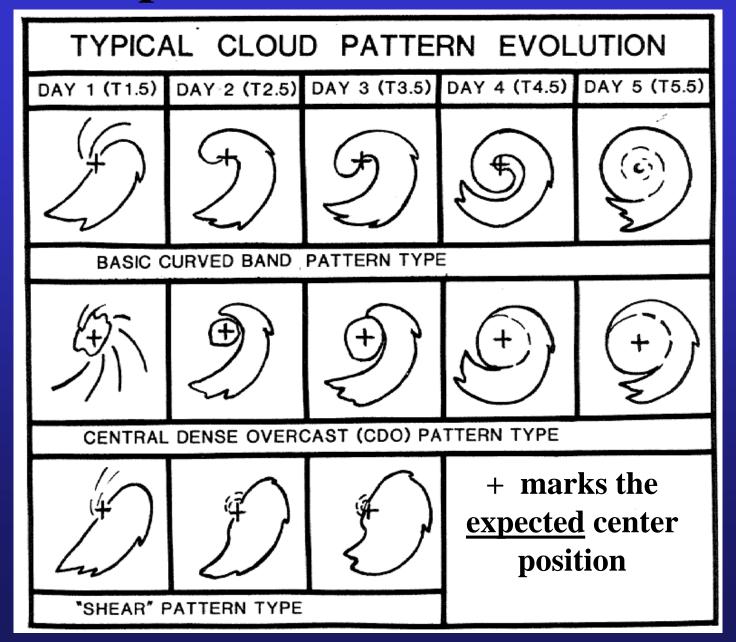

Analyze using cloud pattern below when possible; then goto Step 3

When the storm cloud pattern does not fit any of those in Steps 2A-2D, perform Steps 3, 4, 5, and 6; then return to Step 2 if indicated

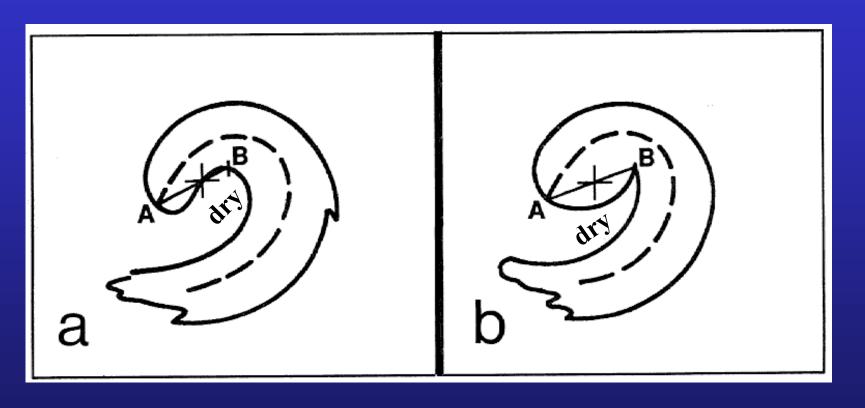

2.

Step 1 - Locate the Cloud System Center (CSC)

- Locate the overall pattern center
- Look for small scale features
- Compare center location with forecast
- Compare center with previous pattern center
- Make final location adjustments
- Looking for lowest possible center in terms of altitude (Surface center if possible)



Step 1 — Locate the Cloud System Center (CSC)

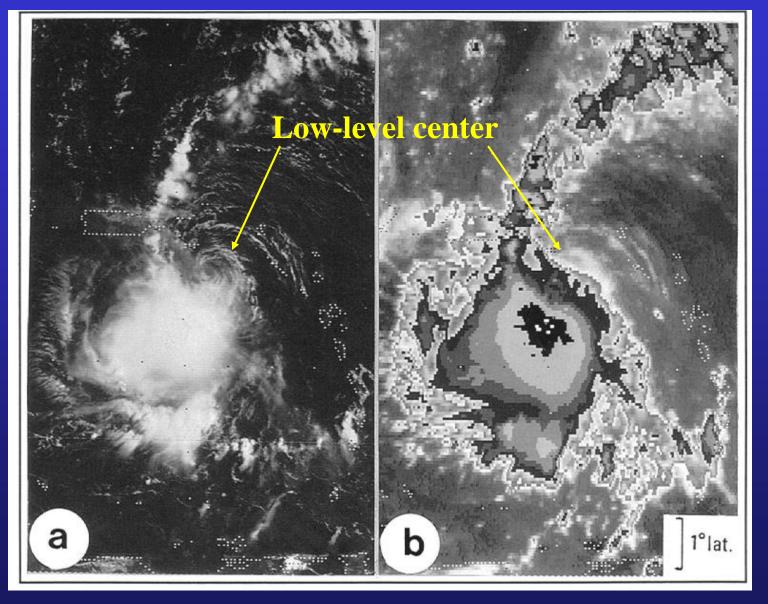


In this image the CSC is the focal point of curved cloud lines

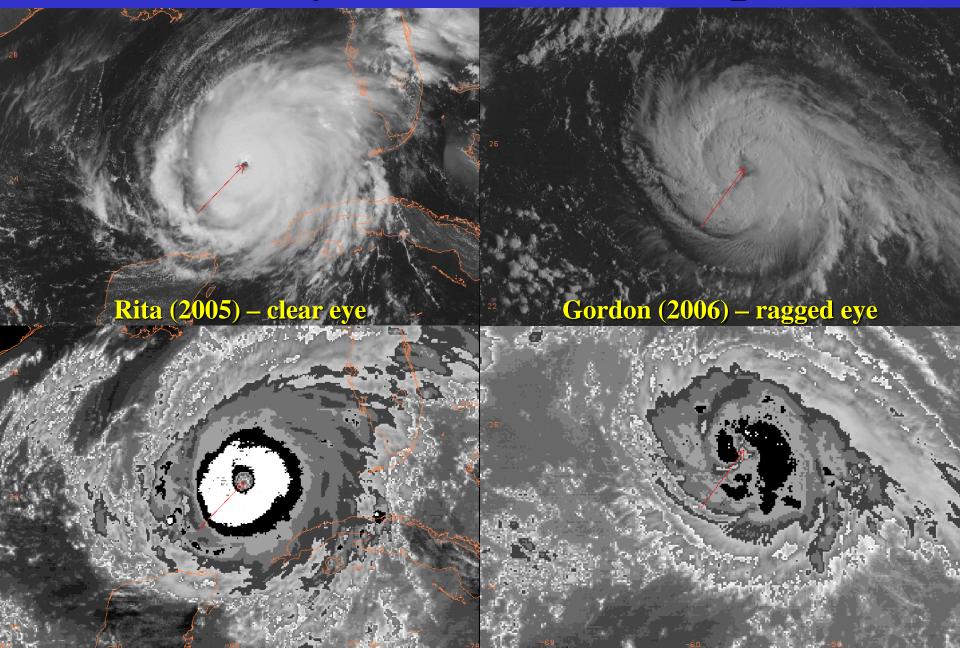
Expected CSC Positions

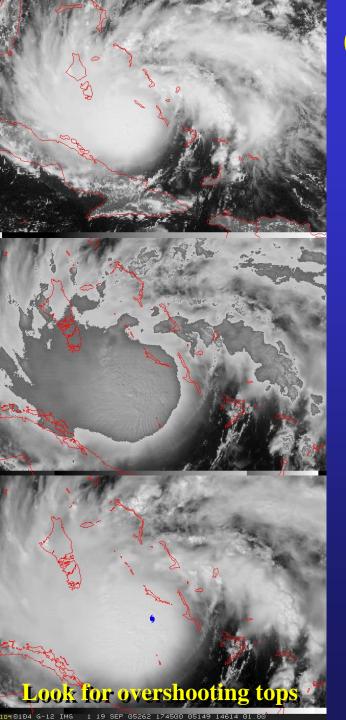
Expected CSC Positions for Curved Band Patterns (Wedge Method)

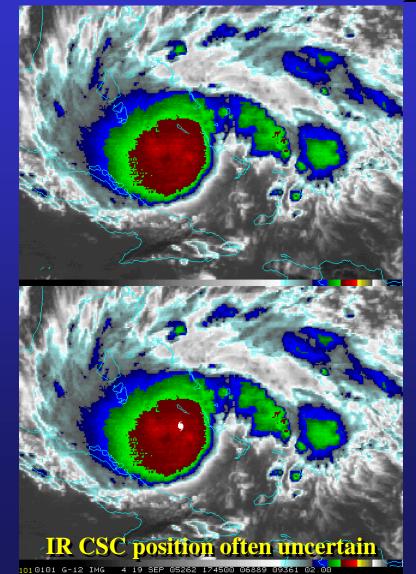
The expected center position is halfway between the end of the curved band (A) and the end of the associated dry slot or cloud minimum wedge (B).


CSC Curved Band Examples

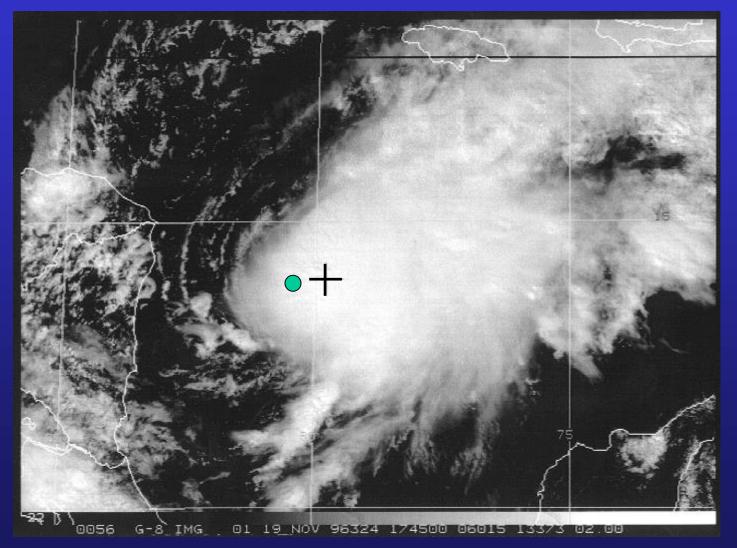
Dry slot


Dry slot

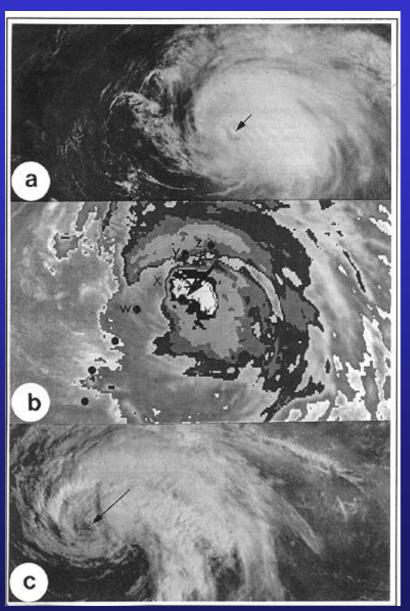

CSC Shear Pattern Example


Good first guess position is the upshear side of the strongest convection

CSC Eye Pattern Examples



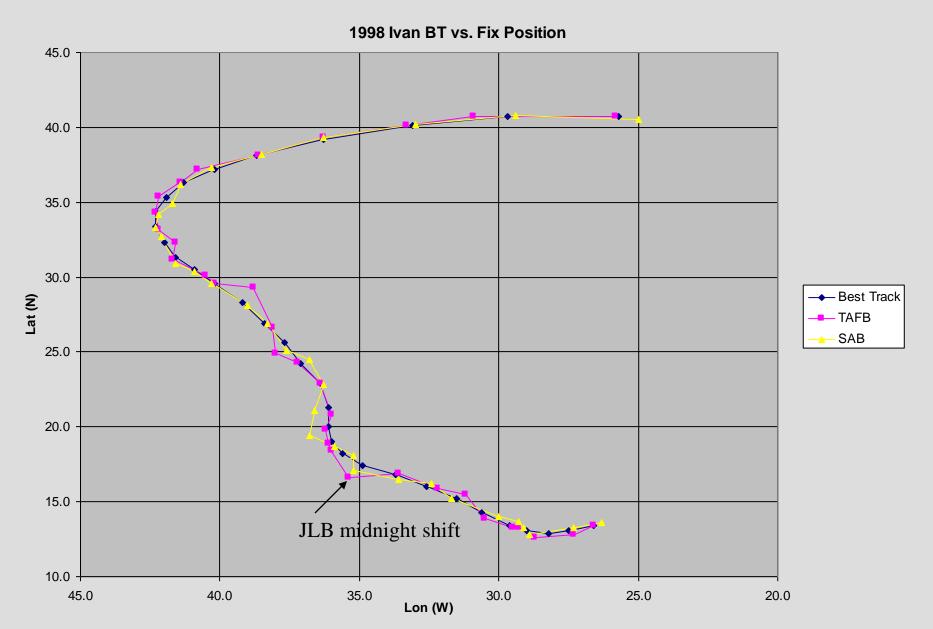
CDO/Embedded Center Pattern CSC Examples


CSC Location Error - Didn't Follow the Low Clouds

Marco (1996): A sheared and tilted system!

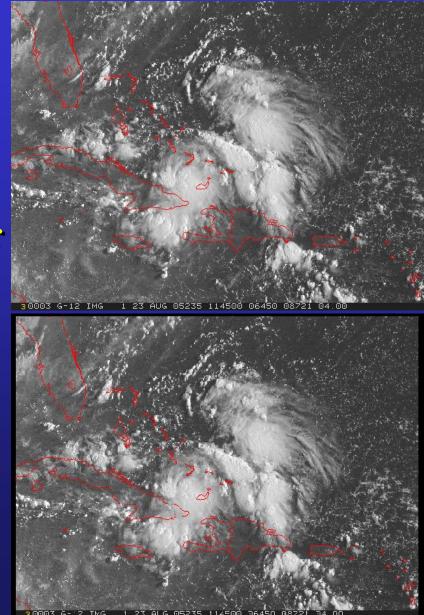
Potential Error - Shear Surprise

The previous day



Overnight

Surprise!

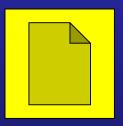

Hurricane Harvey (1981)

CSC Error - Deviated From Forecast

Animated Imagery

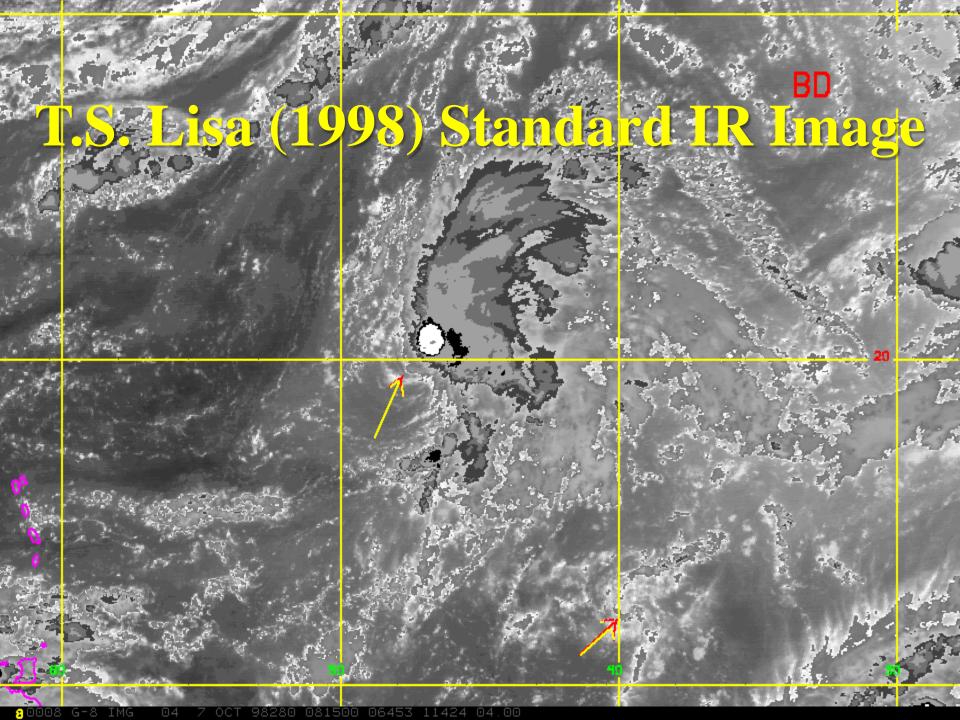
- The technique center finding principles were designed for single images and not animation.
- Animation can show the circulation associated with a tropical cyclone or disturbance and make center fixing easier
- Motions of high level clouds can complicate center fixing, especially when using IR imagery or if the system is tilted
- Use of animation does not guarantee a correct center location!

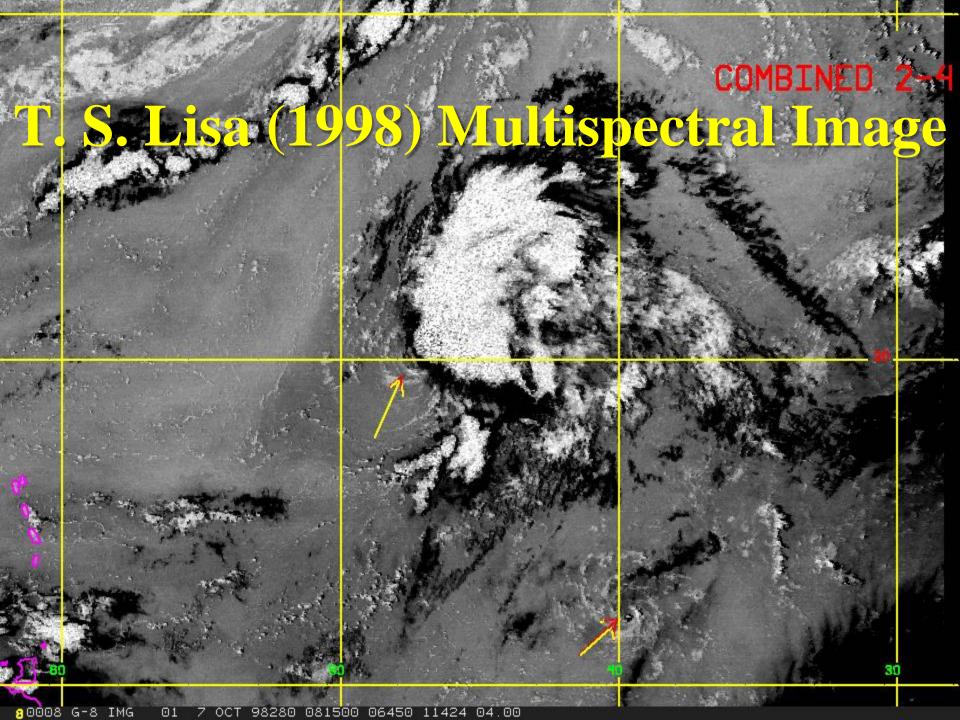
Dyorak Confidence Codes

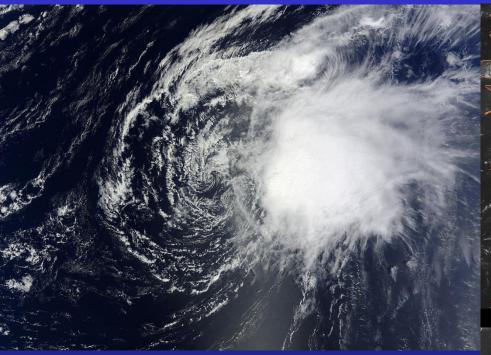

Location Confidence (LCN)

	ation commutation (Ecity
LCN	Definition
1	Well-defined eye
2	Well-defined eye with uncertain
	picture navigation
3	Well-defined circulation center
4	Well-defined circulation center
	with uncertain picture
	navigation
5	Poorly-defined circulation center
6	Poorly-defined circulation center
	with uncertain picture
	navigation

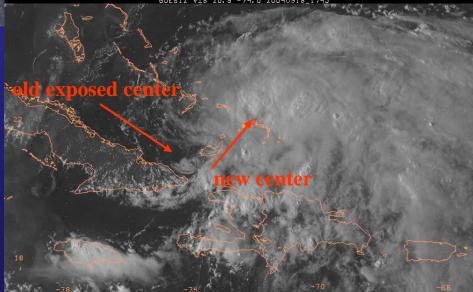
Intensity Confidence (ICN)


ICN	Definition
1	Good confidence in T#
2	May vary T# up or down by 1/2
3	May vary T# up or down by 1


Cloud System Center Finding Exercise!

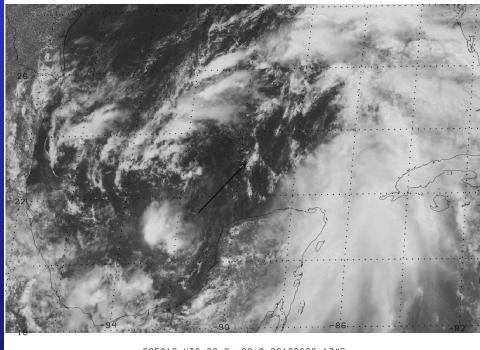

Notes on Step 1

- Other types of imagery (including microwave) and enhancements may be used in finding the CSC
- The CSC of a weak system is not always a closed circulation center
- In a system with multiple centers, use a mean center position between the centers
- It's hard to analyze the intensity if you don't know where the cyclone is!


Cyclones with Multiple Centers

Oscar (2012) – Multiple swirls present west of the convective mass – need to use a mean center

Jeanne (2004) - New center forms northeast of the old exposed center (images are 3 hr apart)

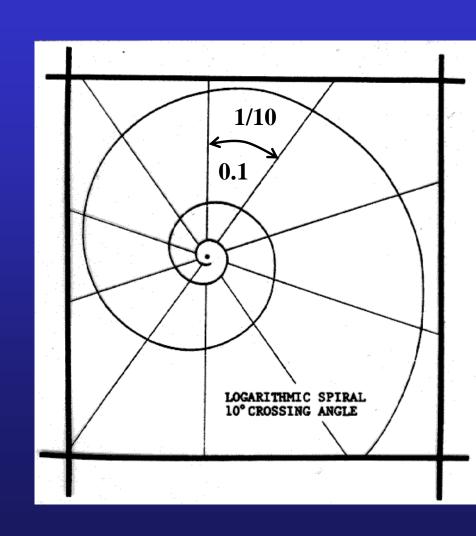


Step 1A - A T1 classification can be given when...

- A convective cluster has persisted for 12 hr or more
- The cluster has a CSC defined within a 2.5° latitude wide or less area which has persisted for 6 hr
- Associated convection is dark gray (DG)
 or colder on the Dvorak BD enhancement
 curve over an area >1.5° diameter less
 than 2° from the center

Note on Step 1A

An existing CSC that does not meet the criteria of Step 1A can be tracked as a system "too weak to classify" - a location without an intensity estimate

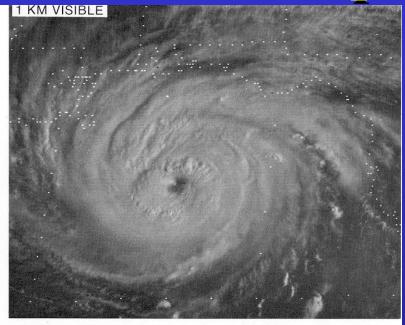


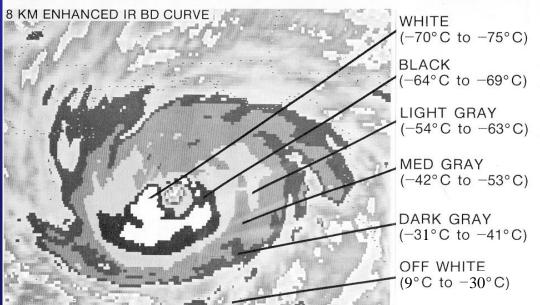
GOES13 VIS 23.0 -89.8 20120622_1745

Pre-Debby (2012) low – too weak to classify using the Dvorak Technique

Step 2 - Analysis of the cyclone cloud pattern

- The cloud pattern analysis produces the Data-T (DT) number intensity estimate
- Tool: Log 10° spiral for measuring curved bands
- Tool: BD enhancement for infrared imagery
- Cloud patterns can change considerably on time scales of a few hours
- Recognizing the correct cloud pattern is vital to a proper intensity analysis


BD Enhancement Curve


Segment		Cloud Top Temperature	
Number	Range	Range (°C)	Name/Abbreviation
2	0-255	>9.0	Warm Medium Gray (WMG)
3	109-202	9.0 to -30	Off White (OW)
4	60-60	-31 to -41	Dark Gray (DG)
5	110-110	-42 to -53	Medium Gray (MG)
6	160-160	-54 to -63	Light Gray (LG)
7	0-0	-64 to -69	Black (B)
8	255-255	-70 to -75	White (W)
9	135-135	-76 to -80	Cold Medium Gray (CMG)
10	85-85	<-80	Cold Dark Gray (CDG)

The BD enhancement curve was developed in an era of 256 shades of gray technology.

BD Enhancement Curve Example

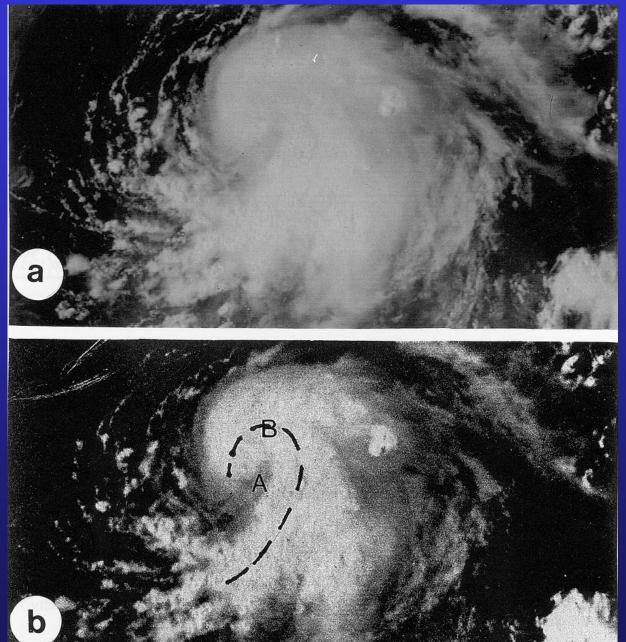
TROPICAL CYCLONE ANALYSIS
SATELLITE DATA
COMPARISON EXERCISE
HURRICANE FREDERIC
1331 GMT 12 September 1979

On this image, light gray (LG) is the coldest BD color shade that completely surrounds the eye.

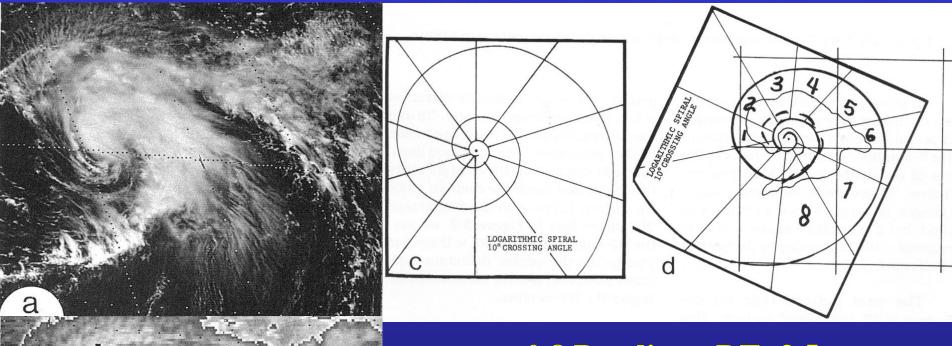
Step 2A - Measuring Curved Bands

- Fit the spiral parallel to the inner edge of the band (VIS) or to the coldest tops in the band (IR)
- Measure only the primary band of the cyclone - other bands don't count
- Endpoints of bands can be rather subjective
- Important: The center of the log 10° spiral is usually not the center of the cyclone!
- Note: Nature does not always produce bands with 10 degrees crossing angles ©

2552 - 225				T	ROP	ICAI	LCY	CLC	NE	ANA	LYS	is v	VOR	KSH	EET	
Vernon F. Dvorak May 1982		T-NUI FOR			MIT										T-N	UM
STEP -	1	1 2A,B Location Curved Band or Shear						С		2D	2E	Data	T-Nur	mber	3	4
DESCRIPTION -	Location	Curve	d Ban	d or S	Shear	E	ye	Ena+E	κι,−CF	CDO	Emb. Centr.	Cor	nputat		ccc	Tren
	Locate Cloud System Center at focal point cloud curvatur	DT 1.5		Arc Le		(VIS) Use Embedded Distance	IEIR) Use Surrounding Temperature	From Autes	Definition Definition	Central S Orese Secreto	(BR) Use Surrounding Temperature	CF	+BF=I	т	Use Rules Repoo	24-Hr chang Sullen
DATE/TIME	LAT LON		\mathcal{D}	2)	<u>(Q)</u>	0	0	E _{No}	Eadj	٧	0	CF	BF	DΤ	0	W-dev
		ļ														



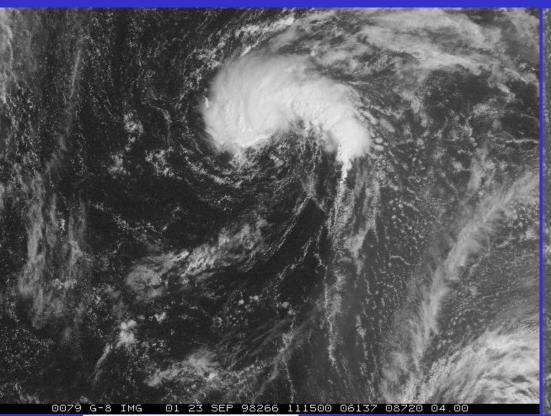
Step 2A - Curved Band Patterns

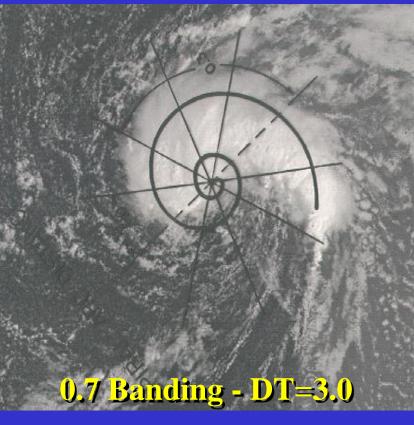

Flow chart images	>.20 Spiral DT 1.5±.5	.40 to .55 DT2.5	.60 to .75	.80 to 1.00 DT3.5	1.05 to 1.30	1.35 to 1.70 DT4.5
Spiral arc distance (tenths along log 10° spiral)	0.20 - 0.35	0.40 - 0.55	0.60 - 0.75	0.80 - 1.00	1.05 - 1.30	1.35 - 1.70
Data-T Number (DT)	1.0 to 2.0	2.5	3.0	3.5	4.0	4.5

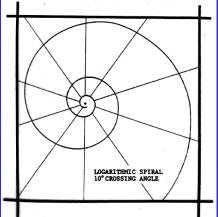
These patterns are for both visible and infrared imagery.
Use banding eyes in Step 2C for unusual band widths and lengths in visible imagery.

Step 2A - Curved Band Example

Step 2A - Measuring Curved Bands






TROPICAL CYCLONE ANALYSIS WORKSHEET Vernon F. Dvorsk T-NUMBER ESTIMATE FROM MEASUREMENTS FOR DATA T-NUMBER (DT) COMPUTATION T-NUMBER ESTIMATE FROM MEASUREMENTS FOR DATA T-NUMBER (DT) COMPUTATION

May 1982 2A,B STEP -Data T-Number Em+Em;-CF CDO Emb. Computation ccc DESCRIPTION Curved Band or Shear Location CF+BF=DT Use Spiral Arc Length Locate Cloud RULES -System Center at focal point of cloud curvature LAT LONG DATE/TIME

Step 2A - Measuring Curved Bands

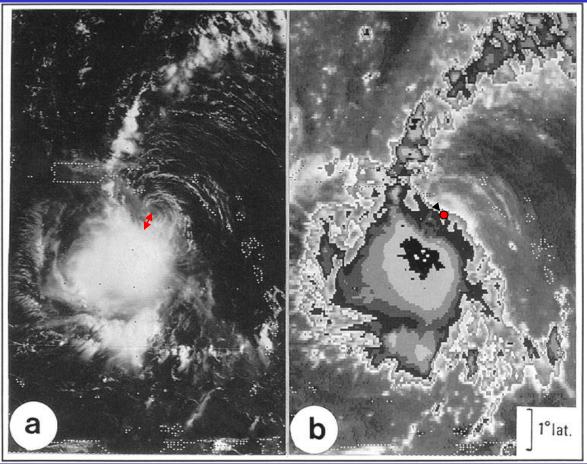


estection of the property of the		TROPICAL CYCLONE ANALYSIS WORKS											
Vernon F. Dvorak May 1982	-	T-NUMBER ESTIMA FOR DATA T-NUI								T-N	IUM,		
STEP -	1	2A,B		C	2D	2E Data T-Numbe			mber	3	4		
DESCRIPTION -	Location	Curved Band or Shear	Eye	Ens+Eas;=CF	CDO	Emb. Centr.	Computat			ccc	Tren		
	Locate Cloud System Center at focal point o cloud curvature		PMSI Use Embedded Distance IERN Use Surrounding Temperature	From Autes Definition	Use Size Sense Overseo	ISRI Use Surrounding Temperature	CF	+BF=I	т	Use Rules	24-Hr chang dutos dutos		
DATE/TIME	LAT LONG	222	\odot	Eno End	16	0	CF	BF		0	W-wes		
		0.7							3.0				

Step 2B – Measuring Shear Patterns

- Measure the distance (in degrees of latitude) from the low level center to the edge of the dense overcast (VIS) or to the edge of the DG shade (IR)
- The edge of the convection can be rather subjective
- Shear patterns tend to be rather unstable, as the convection often shows strong pulses or bursts. Therefore the DT is often considered not to be clear cut

septimental control		TROPICAL CYCLONE ANALYSIS WORKSI												KSH	EET		
Vernon F. Dvorak May 1982		T				AMIT				EASI OMP						T-N	UM
STEP -	1			2A	,в			2	C		2D	2E	Data	T-Nur	nber	3	4
DESCRIPTION -	Locat	ion	Curve	d Ban	nd or S	Shear	E	ye	Em+E	-cF	CDO	Emb. Centr.		nputat		ccc	Tren
	Locate Cl System C at focal p cloud cur	enter oint o	DT 1.5		Arc Le		ivisi usa Embedded Distance	IEIR) Use Surrounding Temperature	From Rutes	Pye Definition	Central Dense Overces	(EIR) Use Surrounding Temperature	CF	+BF=I	т		24-Hr chang builder
DATE/TIME	LAT L	ONG	2)	2)	2)	9	<u></u>	0	Eno	Eadj	٧	0	CF	BF	DΤ	0	O.N.
							_										

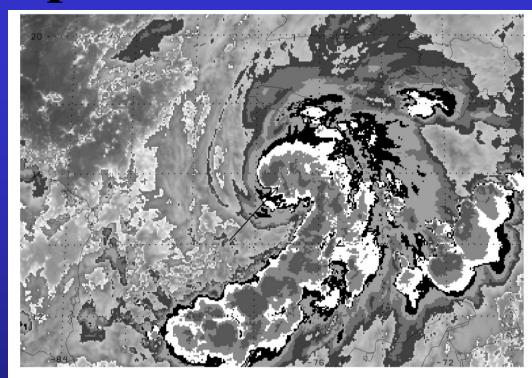


Step 2B - Shear Patterns

Flow chart images	<1½ from edge DT 1.5±.5	<3/4° from edge DT2.5	< % from edge	1/3° into overcast DT3.5
Distance from edge of convection or DG (tenths of deg latitude)	1.25 – 0.75	0.74 – 0.50	0.49 from Cnvtn to 0.32 <u>into</u> Cnvtn	>0.33 <u>into</u> Cnvtn
Data-T Number (DT)	1.0 to 2.0	2.5	3.0	3.5

Note: This is the 1984 version of the shear pattern measurements

Step 2B - Measuring Shear Patterns



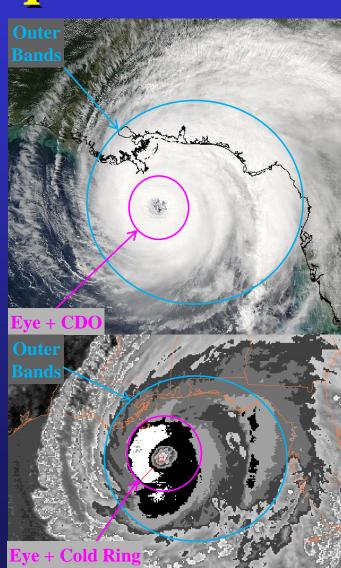
Shear Distance < 0.5° DT=3.0

TROPICAL CYCLONE ANALYSIS WORKSHEET Vernon F. Dvorsk May 1982 T-NUMBER ESTIMATE FROM MEASUREMENTS T-NUMBER (DT) COMPUTATION T-NUMBER (DT) COMPUTATION	
Vernon F. DVorak	
May 1962	rnon F. Dvorak y 1982
STEP - 1 2A,B 2C 2D 2E Date T-Number 3	TEP
DESCRIPTION - Location Curved Band or Shear Eye E+E	ESCRIPTION -
RULES - Locate Cloud System Center at focal point of cloud curvature Cloud curvature Cloud Curvature Cloud Control of Cloud Curvature Cloud Cloud Curvature Cloud Cloud Curvature Cloud Cloud Curvature Cloud Cloud Curvature Cloud Cloud Cloud Curvature Cloud Cl	ULES -
DATE/TIME LAT LONG 22220000 ENGEAGIO O CFBFDT 0	DATE/TIME
<0.5° 3.0	

Notes on Steps 2A and 2B

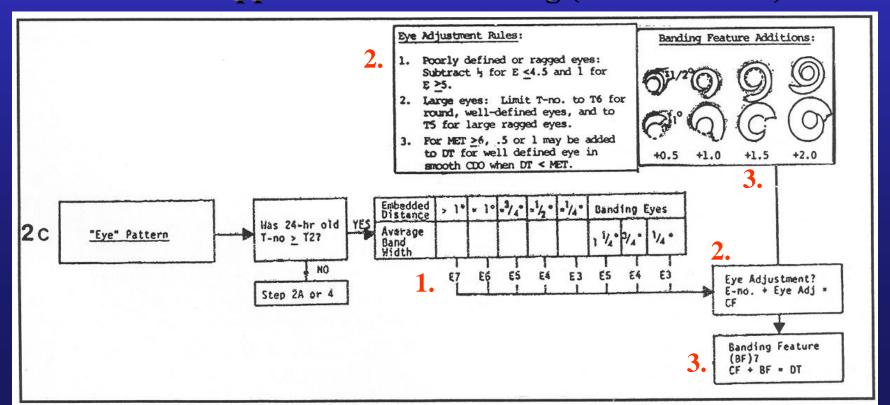
- When available, VIS
 curved band and shear
 patterns are preferable
 to their IR counterparts
- Curved bands and shear patterns directly produce <u>DT</u> numbers
- The measurements are the same for both VIS and IR imagery
- A possible intensity adjustment in the IR curved band pattern: Add 0.5 to the DT if the curved band is White (W) or colder

GOES13 IR 15.6 -77.3 20121024 0545


Sandy (2012) with a White (W) or colder band – add 0.5 to the band DT!

		100		-	334		V				2000			_ •			
4554 5 5 5 5 7 5 7 5 7 5					T	ROP	ICAI	LCY	CLC	NE	ANA	LYS	is v	VOR	KSH	EET	
Vernon F. Dvorak May 1982		7								EASI OMP						T-N	UM,
STEP -	1	1 2A,B							C		2D	J Data 1-Nur			mber	3	4
DESCRIPTION -	Loca	ocation Curved Band or Shear					Eye Exs+Exs,=CF			CDO	Emb. Centr.	Cor	nputat		ccc	Tren	
RULES	Locate (System at focal cloud co	Center point o	DT 1.5	Spiral DT2.5	Arc Le	ongth DT4.5	(VIS) Use Embedded Distance	IEIR) Use Surrounding Temperature	From	Pye Definition	Central S Dense as S Overces:	(8.9) Use Surrounding Temperature	CF	+BF=I	TΟ		24-Hr chang dudos dudos
DATE/TIME	LAT	LONG	2)	2)	2)	<u>(9)</u>	0	(ENO	EAdj	@)	0	CF	BF	DT	0	W-wes
I	1		1	I		ı l		1	ı	i .	i 1	1	ı		1		

Step 2C – Measuring Eye Patterns Some Assembly Required!


- Find the eye number (E-number)
- Perform an Eye Adjustment
- Create the Central Feature (CF) number from the E-number and Eye Adjustment
- Add applicable banding features (BF) to the CF number to get the DT number
- There are significant differences between what is measured in the VIS and IR eye patterns as shown on the flow chart

ASSESSACION CO.		TROPICAL CYCLONE ANALYSIS WORKSH												
Vernon F. Dvorak May 1982			ER ESTIMATA T-NU									T-N	UM	
STEP -	1	2	A,B		2D	2E	Data T-Number			3	4			
DESCRIPTION -	Location	Curved B	and or Shear	Eye	E _m +E	Asj-CF	CDO	Emb. Centr.	Computation			ccc	Tren	
AULES -	Locate Cloud System Cente at focal point cloud curvatu	DT 15 DT 2	Arc Length		perature	Tye Definition	Central Sec Overces: Sec	(EIR) Use Surrounding Temperature	CF	+BF=	TΩ		24-Hr chang builder	
DATE/TIME	LAT LON	TMS	12 9	0 6	Ø E _{No}	Eadj		0	CF	BF	DΤ	0	O.V.	
		1	1			-				-	_			

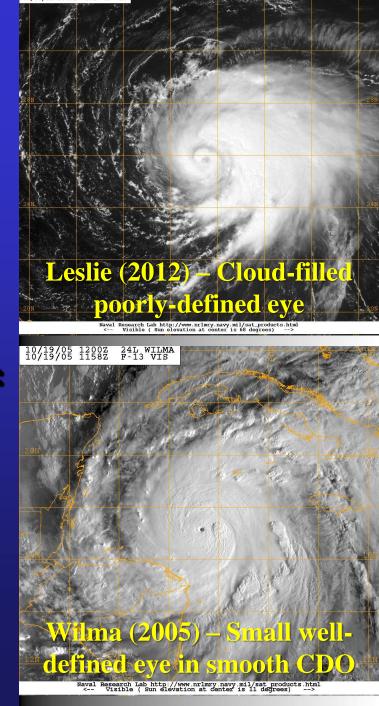
Step 2C - Visible Eye Patterns

- Measure the distance ('embedded distance') from the center of the eye to the edge of the Central Dense Overcast (E-number)
- 2. Make eye adjustment based on size and clarity of eye (E-Number + Eye Adjustment = CF Number)
- 3. Add BF for applicable outer banding (CF + BF = DT)

Step 2C - Eye Patterns

Visible Technique

Is the 24 hour old FT > 2.0? If not, go to step 2A or step 4.

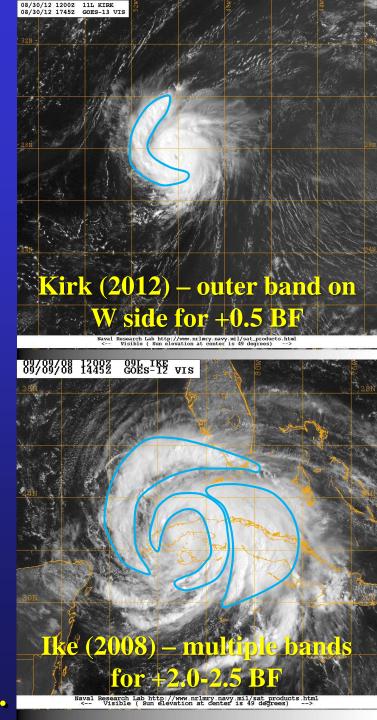

Eye in CDO - Embedded Distance (deg)	>1	~1	~0.75	~0.5	~0.25
Banding Eye - Avg. Width of Band Around Eye (deg)			1.25	0.75	0.25
Eye Number (E#)	7.0	6.0	5.0	4.0	3.0

Note: You can interpolate between the eye numbers when appropriate!


Step 2C - Visible Eye Adjustment

Eye Adjustment Rules

- 1. Poorly defined or ragged eyes: subtract 0.5 for E≤4.5 and 1 for E≥5
- 2. Large eyes (30 nm/56 km or greater):
 Limit T-no to T6 for round welldefined eyes and to T5 for large
 ragged eyes
- 3. For MET≥6, 0.5 or 1 may be added to DT for well-defined eye in smooth CDO when DT<MET



Step 2C - Visible Outer Banding

Banding Feature (BF) Numbers:
Match the banding outside of the central convection to that shown in the pictograph.

Note: You can add multiple bands when applicable up to a total of 2.5 BF numbers.

Step 2C - Measuring a Visible Eye

The eye is 3/4 degrees into the CDO (Eye number 5.0), with no Eye adjustment (0.0). This produces a CF5 + 2.0for banding features -> DT=7.0

2A,B

Curved Band or Shear

Use Spiral Arc Length

System Center |DT1.5|DT2.5|DT3.5|DT4

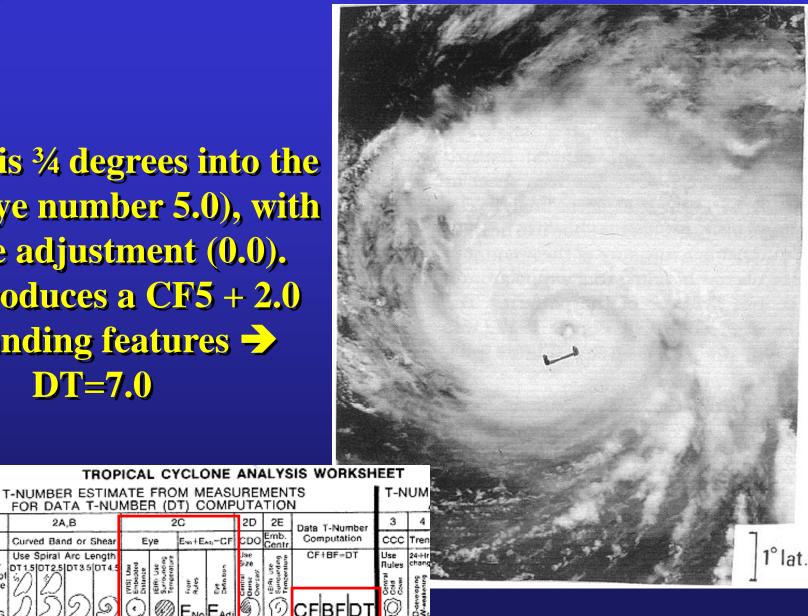
FOR DATA T-NUMBER (DT) COMPUTATION

Em+Em;-CF CDO Emb.

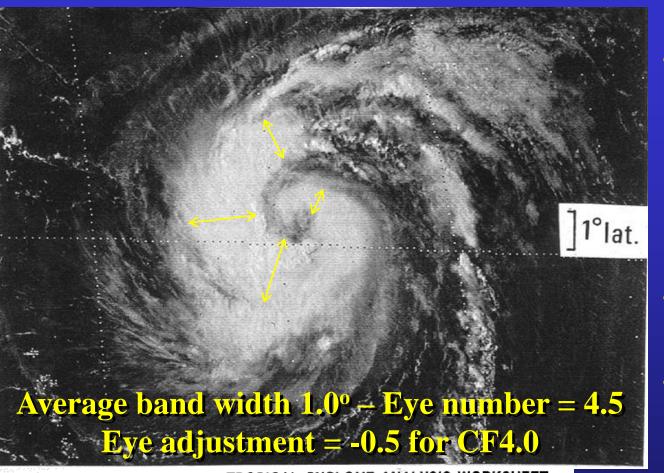
Vernon F. Dvorak

DESCRIPTION

DATE/TIME


Location

at focal point of cloud curvature


Locate Cloud

May 1982 STEP -

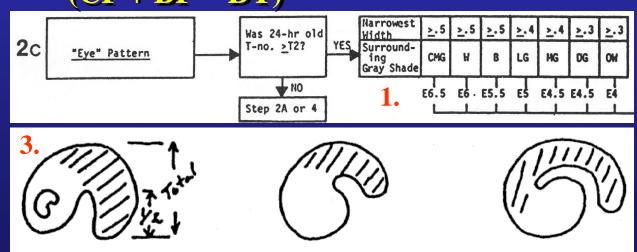
RULES -

Step 2C - VIS Banding Eyes

- E-number
 determined by
 the average width
 of the band
 surrounding the
 eye
- Also uses eye adjustment rules
- Only used with visible imagery

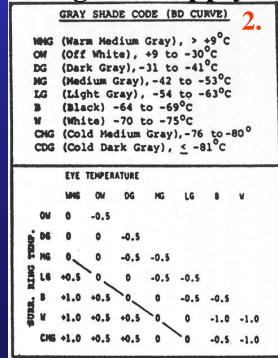
TROPICAL CYCLONE ANALYSIS WORKSHEET T-NUMBER ESTIMATE FROM MEASUREMENTS T-NUM Vernon F. Dvorak FOR DATA T-NUMBER (DT) COMPUTATION May 1982 STEP -2A,B Data T-Number E-n+E-n-CF CDO Emb. Computation CCC |Tren DESCRIPTION Location Curved Band or Shear CF+BF=DT Use Use Spiral Arc Length Locate Cloud RULES -System Center DT1.5[DT2.5]DT3.5[DT4.5 at focal point of cloud curvature CEBEIDT LONG DATE/TIME

Can also used a curved band with 1.2-1.3 banding for a DT=4.0+


Step 2C - Infrared Eye Patterns

- Find the coldest color on the BD enhancement that completely surrounds the eye with a thickness greater than the specified width (closed ring surrounding the eye)
- 2. Make eye adjustment based on the color on the <u>warmest</u> BD enhancement color in the eye (E-Number + Eye Adjustment = CF Number)

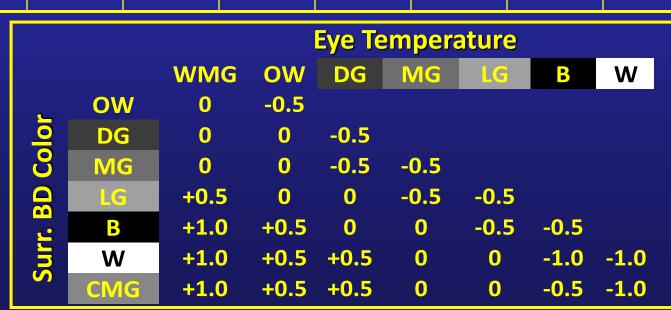
3. Add BF for applicable banding when IR banding rules apply


(CF' + BF' = DT)

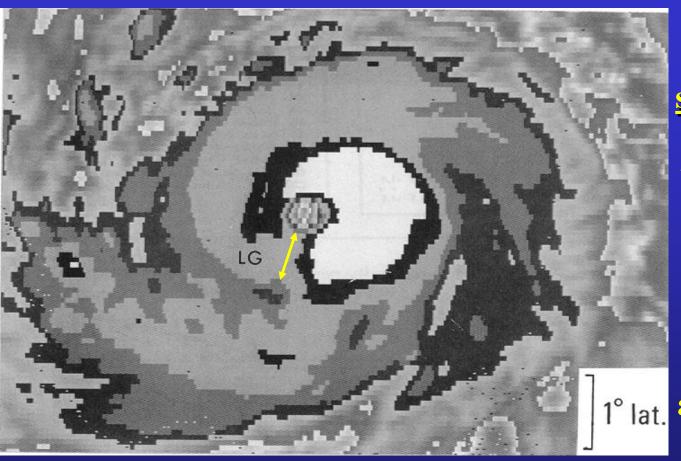
a. Add 1/2 no.

b. Add 1/2 no.

c. Add 1 no.

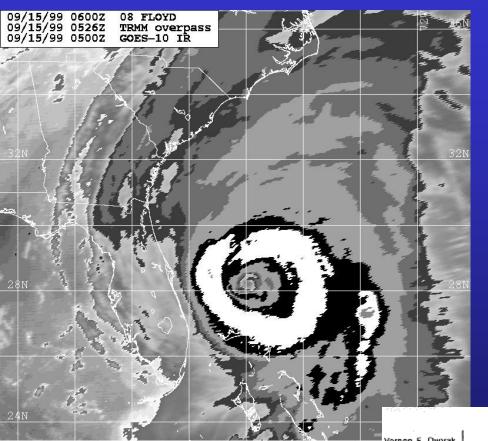

Step 2C - Eye Patterns

Infrared Technique


Is the 24 hour old FT > 2.0? If not, go to step 2A or step 4.

Surrounding BD Color	CMG	W	В	<u>r</u> e	MG	DG	OW
Narrowest width (deg)	≥0.5	≥0.5	≥0.5	≥0.4	≥0.4	≥0.3	≥0.3
Eye Number (E#)	6.5	6.0	5.5	5.0	4.5	4.5	4.0

Eye Adjustment:


Step 2C - Measuring an Infrared Eye

Light Gray (LG) is the coldest color surrounding the eye that meets the width criteria. The eye temperature is Warm Mediun Gray (WMG). The Eye number is 5.0, while the Eye adjustment is +0.5 -**CF=5.5**

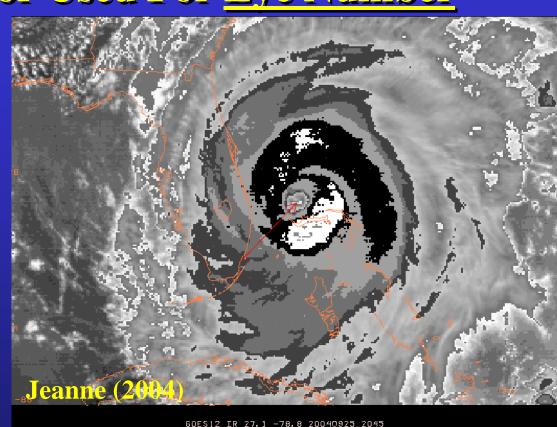
Assessment Services		TROPICAL CYCLONE ANALYSIS WORKS										
Vernon F. Dvorak May 1982	1	-NUMBER ESTIMA FOR DATA T-NUM								T-N	UM	
STEP -	1	2A,B		С	2D	2E	Data	T-Nur	nber	3	4	
DESCRIPTION -	Location	Curved Band or Shear	Eye	Enn+Eng-CF	CDO	Emb. Centr.	Соп	putat		ccc	Tren	
RULES	Locate Cloud System Center at focal point of cloud curvature	Use Spiral Arc Length DT1.5 DT2.5 DT3.5 DT4.5	. 25	From Rutes Bye Definition	Use Section Overset	(8A) Use Surgandary Temperature	CF	+BF=I	т	Use Rules Rules Rules PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	24-Hr chang buton buton	
DATE/TIME	LAT LONG	2121219	$\odot \mathscr{D}$	Eno Eadi	٩	Ø	CF	BF	DΤ	0	Ç.	
WMG e	ye embd	d in LG	LG	5.00.5			5.5	$\overline{0.0}$	5.5			

Step 2C - Size Doesn't Matter for an Infrared Eye

The coldest color completely surrounding the eye is Black (B) even though that color is more than 60 n mi from the eye in some areas. The eye temperature is Off White (OW). The Eye number is 5.5 and the Eye adjustment is 0.5 – CF=6.0

Naval Research Laboratory http://www.nrlmry.navy.mil/sat_May 1982

-90 -80 -70 -60 -50 -40 -20 -10 0 10 20


Note: This is not in total agreement with page 36 of the

manual!

TROPICAL CYCLONE ANALYSIS WORKSHEET T-NUMBER ESTIMATE FROM MEASUREMENTS T-NUM FOR DATA T-NUMBER (DT) COMPUTATION 2A.B Data T-Number CDO Emb. Computation Ena+Ena,=CF DESCRIPTION Location Curved Band or Shear CF+BF=DT Use Spiral Arc Length Locate Cloud BULES -System Center DT1.5|DT2.5|DT3.5|DT4.5 at focal point of cloud curvature OW eve embdd in B

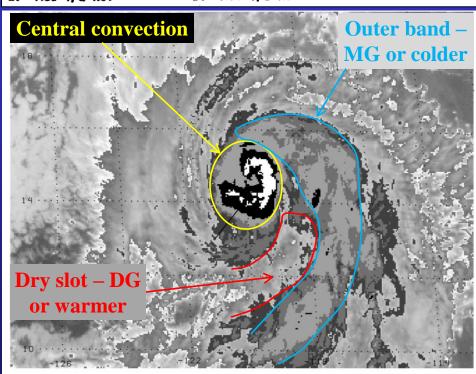
Step 2C - BD Color Used For Eye Adjustment Can Differ From Color Used For Eye Number

Black (B) completely surrounds the eye. However, the B ring is less than 0.5 degrees thick. So, it cannot be used for the eye number. The eye number uses Light Gray (LG) for a 5.0, while the eye adjustment is determined by a Warm **Medium Gray (WMG)** embedded in B (+1.0) -**CF**=6.0

12:54:4:4:4:5:4:4:1		TROPICAL CYCLONE ANALYSIS WORKSH													
Vernon F. Dvorak May 1982	Т Т	T-NUMBER ESTIMATE FROM MEASUREMENTS FOR DATA T-NUMBER (DT) COMPUTATION													
STEP -	1	2A,B	2	C.	2D	2E	Data T-Number			3	4				
DESCRIPTION -	Location	Curved Band or Shear	Eye	CDO	Emb. Centr.	Cor	Computation			Tren					
			Embedded Embedded Distance IEIR(Use Surrounding Temperature	From Rutes Eye Definition	Central S Dense as a c Overces:	(8)At Use Surrounding Temperature	CF	+BF=	т	Use Rules	24-Hr chang button dudor				
DATE/TIME	LAT LONG	2121219	$\bigcirc \mathscr{Q} $	E _{No} E _{Adi}	٩	0	CF	BF	DT	0	W-wea				
WMG e	ye embd	ld in LG/B	LG	5.01.0			6.0	0.0	6.0						

Step 2C - Infrared banding

- Differs significantly from visible banding
- Used <u>only</u> when the CF/DT without banding is less than MET
- Used <u>only</u> for cloud patterns of CF=4 or more
- Band must be MG or colder while dry slot must be DG or warmer



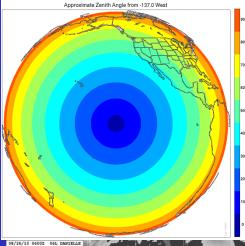
a. Add 1/2 no.

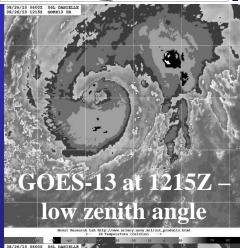
b. Add 1/2 no.

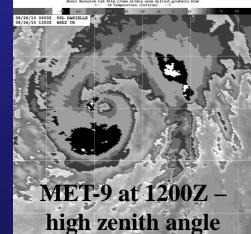
c. Add 1 no.

GOES15 IR 14.5 -119.6 20120707_1800

Daniel (2012) – A potentially eligible IR outer band

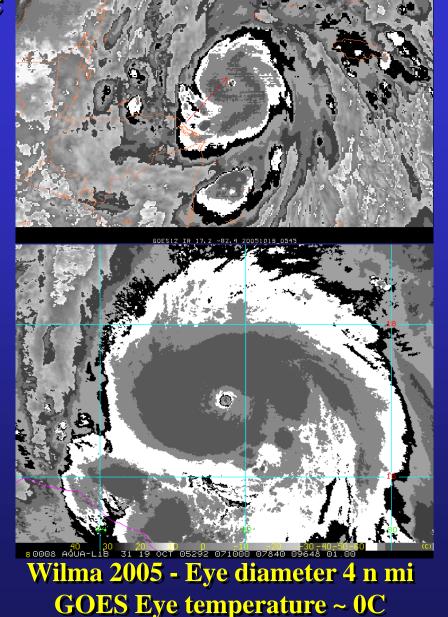

Notes on Step 2C

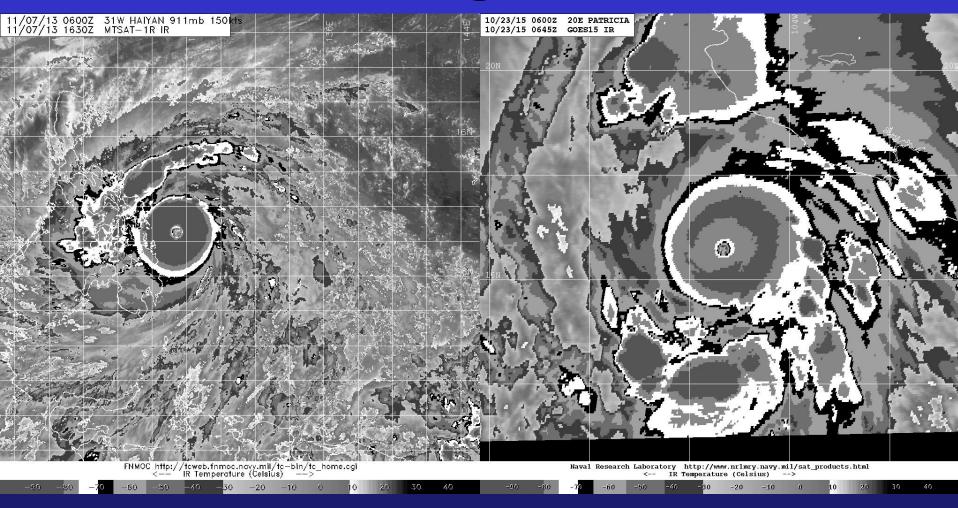

- VIS embedded distances are measured from the center of the eye for small eyes and the edge of the eye for <u>large</u> eyes (30 nm/56 km or more in diameter on VIS)
- IR Eye Pattern is the most objective of all Dvorak measurements, but it cannot produce a DT=8.0 without adding banding
- Beware large satellite zenith/viewing angles and not being able to see to the bottom of the eye
- Beware sucker holes!


*104 * 1 * 1 * 1 * 1	TROPICAL CYCLONE ANALYSIS WORKSH														KSH	EET	
Vernon F. Dvorak May 1982		T-NUMBER ESTIMATE FROM MEASUREMENTS FOR DATA T-NUMBER (DT) COMPUTATION												T-N	UM,		
STEP -	1	1 2A,B							С		2D	2E	Data T-Number			3	4
DESCRIPTION -	Loca	ation	Curve	ed Bar	nd or s	Shear	Eye E ₄₀ +E ₄₁ -CF				CDO	Emb. Centr.	Computation			ccc	Tren
RULES -	Locate (System at focal cloud co	Center point of prvature	DT 1.5		Arc Le		(VIS) Use Embedded Distance	IEIR) Use Surrounding Temperature	From	Definition Definition	Use Size Seaso Oweseyo	(8)At Use Surrounding Temperature	CF+BF=D1				24-Hr chang button of
DATE/TIME	LAT	LONG	2)	2)	2	9	0	(ENO	Eadj	و)	0	CF	BF	DΤ	0	O.V.
					1	L		1		i		I					

Problem: Satellite Zenith/Viewing Angle and Cloud Tops

- The satellite zenith/viewing angle of a TC can impact the Dvorak analysis.
- TCs close to the satellite have low zenith/ viewing angles and thus are less of a problem.
- TCs far from the satellite (e. g. near the edge of a full disk scan) are a problem for IR analysis, as IR cloud top temperatures appear too cold.
- High zenith/viewing angles can also make it difficult to see to the bottom of the eye.
- Use the satellite closest to the TC for a Dvorak analysis if at all possible, and use IR DT numbers made at high zenith/viewing angles with caution.
- METEOSAT-9 is at 0W, GOES-East at 75W, and GOES-West at 135W.

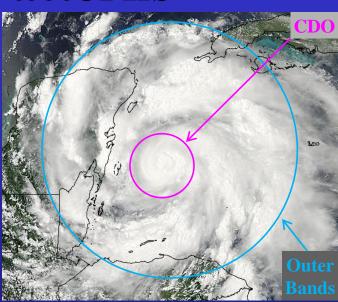


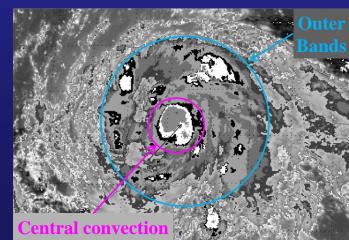

Problem: Can't See the Bottom of the Eye

For small eyes (generally less than 10 n mi wide), the satellite may not be able to measure the warmest temperature at the bottom of the eye. This can result in an underestimate of the intensity in both subjective and objective Dvorak techniques.

NOAA/Aqua Eye temperature ~ +20C

How strong are these?


Supertyphoon Haiyan (T8.0)
Western North Pacific,
1630Z 7 November 2013

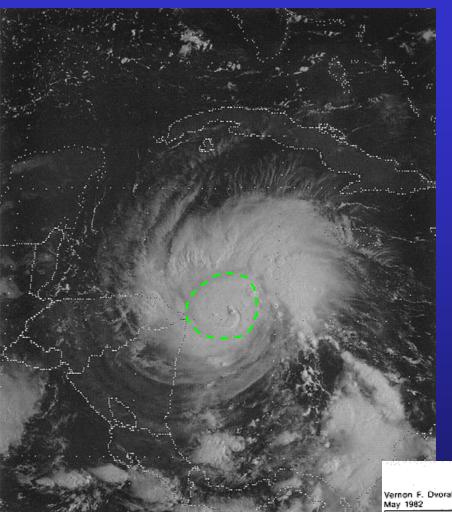

Hurricane Patricia (180 kt)
Eastern North Pacific,
0645Z 23 October 2015

Steps 2D and 2E Central Dense Overcast (CDO) and Embedded Center Patterns

- Patterns are complimentary CDO uses VIS imagery and Embedded Center uses IR
- Both patterns directly produce <u>CF</u> numbers
- CDO pattern measures the size of the CDO
- Embedded Center pattern measures how far the CSC is embedded into specified colors on the BD curve
- All banding rules from Eye patterns apply to CDO and Embedded Center patterns

A104 - A1	TROPICAL CYCLONE ANALYSIS WORKSH														
Vernon F. Dvorak May 1982		T-NUMBER ESTIMATE FROM MEASUREMENTS FOR DATA T-NUMBER (DT) COMPUTATION												T-N	UM
STEP -	1		2A,B			_	С		2D	2E	Data T-Number			3	4
DESCRIPTION -	Location	Eye Exe+Exa,=CF			CDO	Emb. Centr.	Computation			ccc	Tren				
	Locate Cloud System Cente at focal point cloud curvatu	DT 1.5 C	piral Arc L	ength	IVISI Usa Embedded Distance	IEIR) Use Sumounding Temperature	From	Eye Definition	Use Size Size Overces	(8)At Use Surrounding Temperature	CF	+BF=I	TΩ	Use Rules Rules	24-Hr chang buseus seasons
DATE/TIME	LAT LON	ΓM	<u> 2</u> 2	9	0	0	ENo	Eadj	٩	0	CF	BF	DΤ	0	W. dev
		1													

Steps 2D and 2E - CDO and Embedded Center Patterns

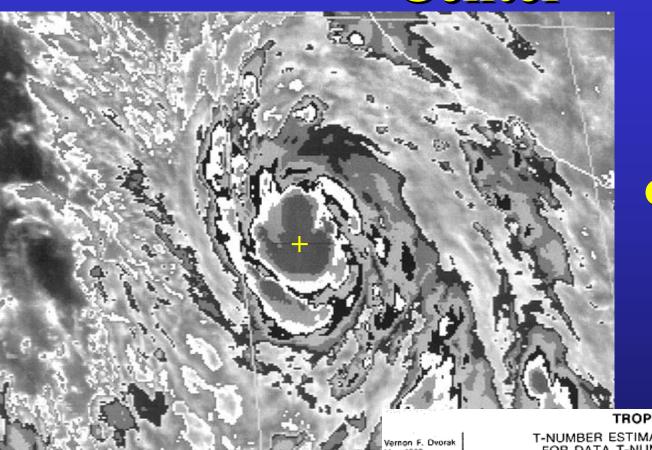

Step 2D - Is the CDO \geq 0.75 deg wide? If not, go to step 2A or step 4.

CDO edge is:		Well-d	efined		Irreg	gular
Diameter (deg)	≥2.25	1.75	1.25	0.75	>1.5	1.0- 1.5
Central Feature Number (CF)	5.0	4.0	3.0	2.0	3.0	2.0

Step 2E - Is the 12 hour old $FT \ge 3.5$? If not, go to step 2A or step 4.

Surrounding BD Color	W or colder	В	<u>r</u> c	MG	DG	OW
Embedded distance (deg)	≥0.6	≥0.6	≥0.5	≥0.5	≥0.4	≥0.4
Central Feature Number (CF)	5.0	5.0	4.5	4.0	4.0	3.5

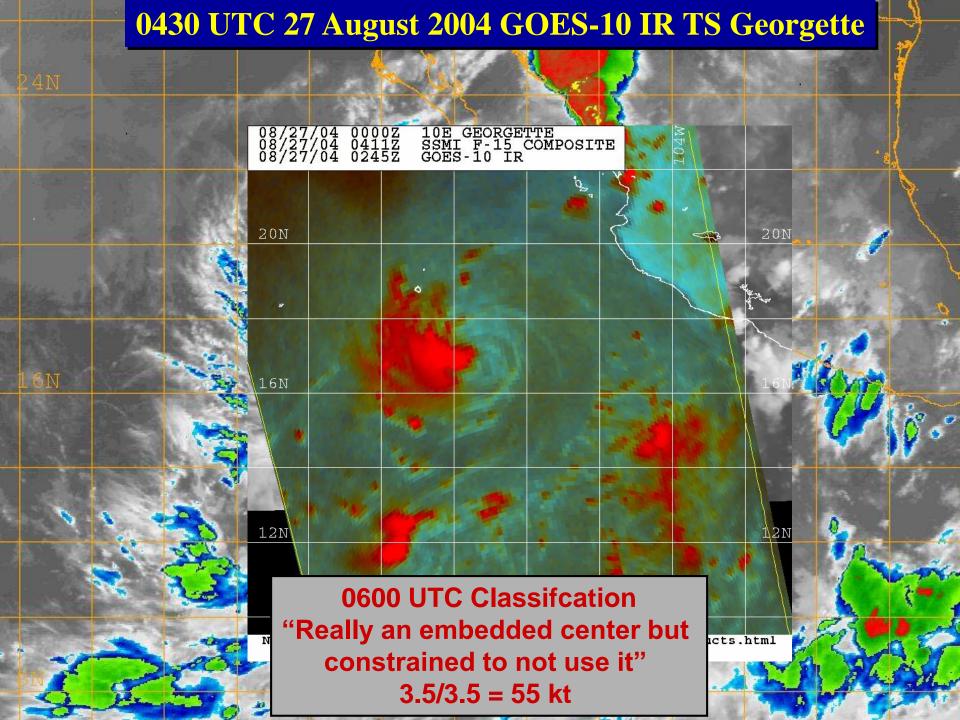
Step 2D - Measuring a CDO



The CDO is about 2 deg wide − CF=4.5 + 1.0 for banding around the CDO → DT=5.5

TROPICAL CYCLONE ANALYSIS WORKSHEET

100																		
	Vernon F. Dvorak May 1982		T-NUMBER ESTIMATE FROM MEASUREMENTS FOR DATA T-NUMBER (DT) COMPUTATION													T-N	UM	
	STEP -	1	1 2A,B							C		2D	2E	Data T-Number			3	4
	DESCRIPTION -	Loca	ition	Curve	ed Ban	nd or s	Shear	E	ye	Ena+E	κα,≃CF	CDC	Emb. Centr	Cor	nputal	ccc	Tren	
		Locate (System at focal cloud cu	Center point of	DT 1.5	Spiral DT2.5	Arc Le	ength DT4.5	(VIS) Use Embedded Distance	IEIR) Use Surrounding Temperature	From	Pye Definition	Use Size Second Overse	USe undang erature		+BF=I	DT.		24-Hr chang dutos
	DATE/TIME	LAT	LONG	2)	2)	2)	(8)	0	1	ENo	Eadj	٩	10	CF	BF	DT	0	O.S.
												2.0	0	4.5	1.0	5.5		


Step 2E - Measuring an Embedded Center

CSC embedded in CMG - DT=5.0

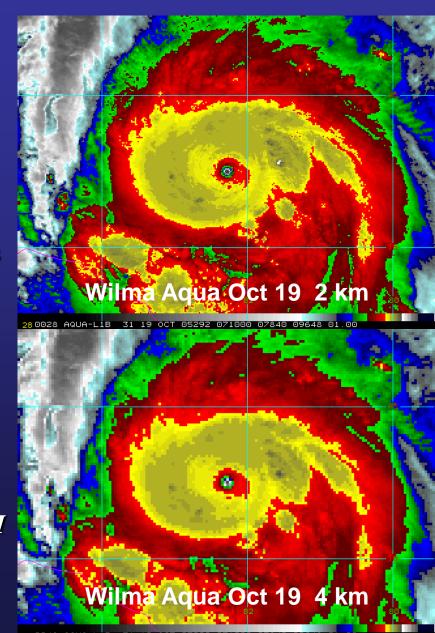
TROPICAL CYCLONE ANALYSIS WORKSHEET


Vernon F. Dvorak May 1982		T								EASI OMP						T-N	U
STEP -	1		2A,B						С		2D	2E	LISTS 1-NUMB			3	
DESCRIPTION -	Loca	ition	Curved Band or Shear				E	ye	Eno+E	A1)−CF	CDO	Emb. Centr	Cor	nputat		ccc	Tr
RULES -	Locate (System at focal cloud cu	Center point of	DT 1.5		Arc Le	DT 4.5	Finbacked Distance	SURFO Use Surrounding Temperature	From Rutes	Eye Definition	Dae Size Sessoo Sessoo	(Surrounding	CF	+BF=I			24 chi
DATE/TIME	LAT	LONG	2	2)	ZJ	(8)	(4)	160	ENo	Eadj	۹)	19	CF	BF	DT	\mathcal{Q}	ဝိ
											CN	ИG	5.0	$\overline{0.0}$	5.0		

Notes on Steps 2D and 2E

- Edge of CDO is often subjective
- You can interpolate between the CDO CF numbers when appropriate
- For an elliptical CDO, the CDO size is the average of the sizes of the long and short axes of the ellipse.
- Embedded Center pattern can only be used when the 12 hr old FT is 3.5 or greater as otherwise it can produce unrealistically high intensity estimates
- Embedded Center pattern is the most uncertain of all Dvorak measurements where the classifier puts the CSC makes a <u>big</u> difference in the intensity estimate
- When available and appropriate, use of VIS CDO is preferable to use of IR embedded center

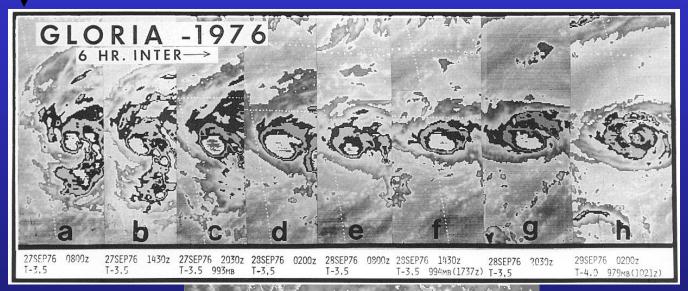
Pattern Recognition Exercise!

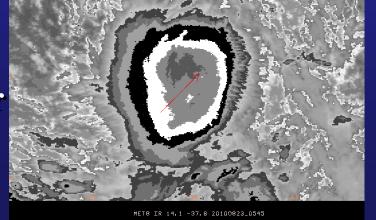

To summarize the cloud pattern types...

SUMMARY OF SATELLITE ESTIMATES OF T.C. INTENSITY

PATTERN	IMAGE	INTENSITY GIVEN BY:
CURVED BAND	VIS, EIR	SPIRAL DISTANCE OF BAND SURROUNDING CENTER
SHEAR	VIS, EIR	DISTANCE OF CENTER FROM EDGE OF DEEP CB CLOUDS AND CENTER DEFINITION
CDO (Central Dense Overcast)	VIS	SIZE OF CDO AND BANDING
CDO (Embedded Center)	EIR	SURROUNDING TEMP.
EYE	VIS	DISTANCE OF EYE FROM CDO EDGE AND BANDING
EYE	EIR	SURROUNDING TEMP. AND EYE TEMP.

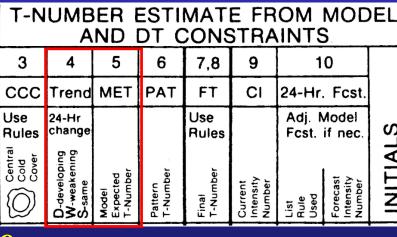
Data-T Numbers in the ABI/AHI Era


- Measurements of most of the Dvorak cloud patterns are relatively insensitive to the higher resolution of the new imagers on the GOES-R/ Himawari satellites.
- Infrared eye patterns could seen changes in Data-T numbers caused by 1) seeing warmer temperatures in the eye, and 2) seeing less uniform cloud tops surrounding the eye.
- In most cases, the Data-T numbers will change little, although some cases could see changes of 0.5 T-numbers.
- There is a need to develop a Dvorak-like algorithm for the more advanced ABI/AHI data!


Step 3 - Central Cold Cover Pattern

Central Cold (Dense) Cover
Pattern

Rules: When past T-no. \leq T3, maintain model trend for 12 hours; then hold same. When past T-no \geq T3.5 hold T-no same. Use as final T-no; then go to Step 9


- Also known as "bursting" pattern
- Can resemble shear or CDO/embedded center patterns

Danielle (2010) – a likely CCC pattern

Steps 4 and 5 - Determine 24 hr Trend and Model Expected T-Number (MET)

- The Dvorak Technique employs a conceptual model of TC growth and decay rates over 24 hr periods
- 24 hr comparisons avoid the diurnal convective variations observed in TC cloud patterns
- For trend purposes, <u>always</u> use 24 hr comparisons even though intensity estimate are made more frequently (e. g. every 6 hr)
- 24 hr trends are reported as <u>Developing, Weakening, or Steady</u>

Step 4 - Determine 24 nr 1 renu							
<u>D</u> eveloping	<u>W</u> eakening	<u>S</u> teady					
eased convection near (larger or colder CDO)	Decreased convection near CSC (smaller or	No noticeable 24 hr change					

Both developing and

(mixed signals)

cyclone

weakening signs present

CCC in a cyclone of T3.5

or greater or CCC for 12

hr or more in a weaker

warmer CDO)

banding

distinct

Decreased curved

Eye disappears, or

becomes cooler, or less

Exposed center further

from overcast or covered

center becomes exposed

Decreased curvature of

low clouds near CSC

Incre

CSC

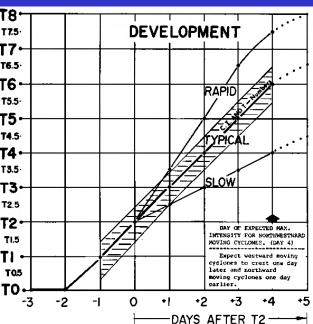
Increased curved banding

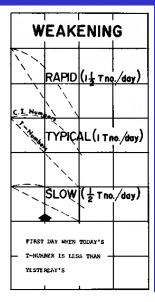
(primary band or bands

Eye forms, or becomes

warmer, or more distinct

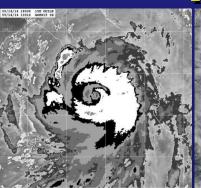
Exposed center closer to

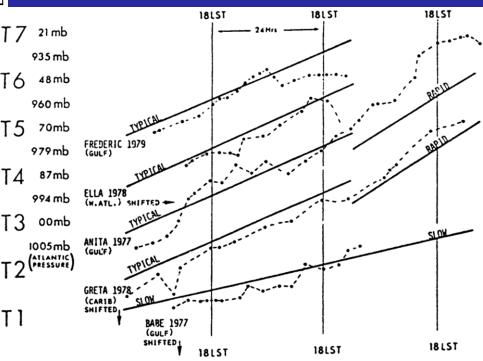

Increased curvature of low


around the CDO)

overcast

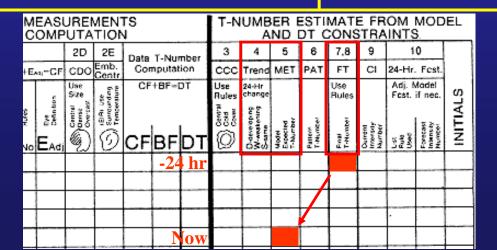
clouds near CSC


Dvorak Model Development Curves



In the Dvorak conceptual model, 'normal' strengthening or weakening is 1 T-number/day.
Rapid changes are 1.5 T-numbers per day, while slow changes are 0.5 T-numbers/day.

Note: Eyewall replacement cycles are <u>not</u> part of the Dvorak conceptual model.



Step 5 - Model Expected T-Number

- The MET is a first guess estimate of the intensity based on the 24 hr old Final T-Number and the current determined 24 hr trend
- For a <u>S</u>teady trend, the MET = the 24 hr old FT
- The MET for first classification is 1.0

	Developing	Weakening
Rapid	MET=24 hr old FT+1.5	MET=24 hr old FT-1.5
Normal	MET=24 hr old FT+1.0	MET=24 hr old FT-1.0
Slow	MET=24 hr old FT+0.5	MET=24 hr old FT-0.5

Step 5 - Model Expected T-Number Rapid or Slow Changes

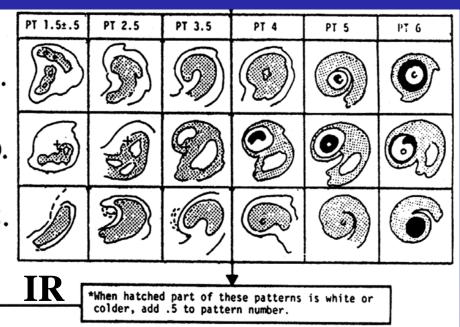
- Two consecutive previous Dvorak measurements of rapid or slow development/weakening are needed to establish rapid or slow 24 hr changes
 - Look at the previous two FT values and compare them to the respective FT values from 24 hours prior
 - If the difference between both of these values is more (less) than 1.0, then you have rapid (slow) development/weakening (add the +/- to the D or W)
 - This does not count the measurement your currently making
- Or, one previous Dvorak measurement and signs of strong intensification or weakening (Step 10)

Step 5 - Model Expected T-Number Rapid or Slow Changes

Example: For the upcoming fix for 00Z/14 Oct 2014, note there are two consecutive 24 hour changes in the column labeled "FT 24h Change". If the 24 hour trend for the 00Z /14 Oct fix is weakening, the prior trends justify a W+, since there are two consecutive 24 hr changes for FT that are more than 1.0.

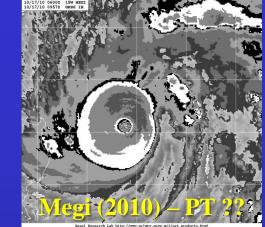
Dvorak Fix History												
Name	Satellite Image Info		Cloud System Center Location		Classification Type	Tropical Pattern	Tropical FT C	СІ	FT -24h	FT 24h Change	T 12h Change	e Fc
	Date	Time	Lat	Lon	,,,,,	- attorn						
AL072014 Print Edit	13 Oct	17:45	33.7	-51.0	Weak		1.5	2.5	4.5	-3.0	-2.0	٤
AL072014 Print Edit	13 Oct	11:45	34.2	-53.6	Trop	shr	2.5	3.1	4.0	-1.5	-2.0	٤
AL072014 Print Edit	13 Oct	5:45	34.4	-57.0	Trop	shr	3.5	4.7	3.5	0.0	-1.0	G
AL072014 Print Edit	12 Oct	23:45	35.7	-59.0	Trop	embctr	4.5	4.5	3.5	1.0	0.5	N
AL072014 Print Edit	12 Oct	17:45	34.3	-62.2	Trop	embctr	4.5	4.5	3.0	1.5	1.0	٤
AL072014 Print Edit	12 Oct	11:45	33.1	-63.8	Trop	embctr	4.0	4.0	3.0	1.0	0.5	٤
AL072014 Print Edit	12 Oct	5:45	31.6	-64.7	Trop	shr	3.5	3.5	3.0	0.5	0.5	G
The second secon	12 Oct	5:45	31.6	-64.7	Trop	shr	3.5	3.5	3.0	0.5	0.5	

Notes on steps 4 and 5

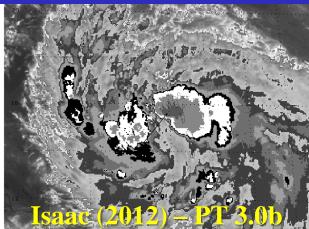

- The trend for step 4 is determined by examining satellite images 24 hours apart.
- The trend for the initial classification is always a normal D.
- You need at least 24 hours of Dvorak classifications to change the development trend. The first 18 hours after the initial T1 are always a normal D.
- Changes in the development rate for step 5 from D to D- or D+ (or W to W- or W+) need to use the technique rules. Just because you think you are on a different development rate does <u>not</u> allow you to change it arbitrarily!

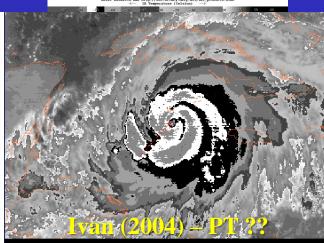
Step 6 - Pattern T-Number (PT or PAT)

- Choose the Pattern T-number by comparing the cyclone cloud pattern to the diagrams on the flow charts
- PATs above T6 require extrapolation

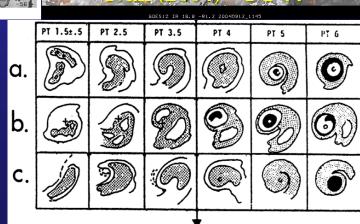

	T-NUMBER ESTIMATE FROM MODEL AND DT CONSTRAINTS									
	3	4	5	6	7,8		9	1	10	
]	ccc	Trend	MET	PAT	FT	Γ	CI	24-Hr	. Fcst.	
	Use Rules	24-Hr change			Use Rules				Model if nec.	U
	Central Cold Cover	D-developing W-weakening S-same	Model Expected T-Number	Pattern T-Number	Final T-Number	Current	Intensity	List Rule Used	Forecast Intensity Number	SIAITIM
										
1.	5±.5	PT 2.5	PT :	3.5	PT 4		PT	5	PT 6	

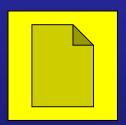
	PT 1.5 ±.5	PT 2.5	PT 3.5	PT 4	PT 5	PT 6			
	CUR	VED BAND TYP	(Z)	(4)		<u>.</u>			
•		TYPE			22	(a) # 5			
	(C)	3	(S)	2	(0)	0,			
•	When cloud comma is extremely small (<21° lat),								
	, <u>1</u>	When cloud c subtract 1 f	omma is extre	emely small (number.	<2'2 lat),	_			




If the PT is 1 or more T-numbers from the MET, check your work!

Step 6 - Pattern T-Number (PT or PAT)





VIS 13.2 -78.3 20121022_1745										
	PT 1.5 ±.5	PT 2.5	PT 3.5	PT 4	PT 5	PT 6				
a.	M	رکی	5		(A)	0				
	CUI	RVED BAND TYPE	130 - 20	13% 3	21/3° 🔊					
b.	D	TYPE				المراقع المراق				
С	(B)	() () () () () () () () () ()	6	2	(0)	0)				
When cloud comma is extremely small (<212 lat), subtract 1 from pattern number.										

*When hatched part of these patterns is white or colder, add .5 to pattern number.

Pattern and Trend Exercise!

Step 7 - Final T-Number (FT)

- Choose the FT from the DT, PT and MET:
 - Use DT from Step 2 when cloud features are clear-cut
 - Use PT from Step 6 when DT is not clear <u>and</u> when PT is different from MET
 - For all other cases, use the MET from step 5
- Beware constraints! (Step 8)

T-NUMBER ESTIMATE FROM MODEL AND DT CONSTRAINTS										
3	4	5	6	7,8	9	1	0			
ССС	Trend	MET	PAT	FT	CI	24-Hr. Fcst.				
Use Rules	24-Hr change			Use Rules		Adj. Model Fcst. if nec.		S		
Cold Cover	D-developing W-weakening S-same	Model Expected T-Number	Pattern T-Number	Final T-Number	Current Intensity Number	List Rule Used	Forecast Intensity Number	INITIALS		

What comprises a clear-cut DT?

What comprises clear cut:

- An unambiguous cloud pattern measurement. For example, an infrared eye measurement is often considered clear cut.
- Measurements using multiple cloud pattern types that give the same DT

What does not:

- Ambiguous or hard to measure/interpret cloud pattern measurements. For example, shear pattern measurements are often not clear cut.
- Measurements using multiple cloud pattern types that give different DTs

Step 8 - FT Constraints

- 1. Initial classification must be T1 or T1.5
- 2. During first 24 hours of development, FT cannot be lowered at night
- 3. 24 hr after initial T1, FT must be ≤ 2.5

T-NUMBER ESTIMATE FROM MODEL AND DT CONSTRAINTS										
3	4	5	6	7,8	9	1	0			
ccc	Trend	MET	PAT	FT	CI	24-Hr. Fcst.				
	24-Hr change			Use Rules		Adj. N Fcst.	Model if nec.	တ		
Contral	D-developing W-weakening S-same	Model Expected T-Number	Pattern T-Number	Final T-Number	Current Intensity Number	List Rule Used	Forecast Intensity Number	INITIALS		

- 4. Modified FT limits (next slide)
- 5. FT must = MET ± 1

Note: The CI never constrains the FT!

Step 8 - FT Number Change Limits

For <u>early</u> development: 0.5 T-numbers over 6 hr

Original FT Constraints for storms with T≥4.0 (Dvorak):

Modified FT Constraints now used for developing storms above T1.5 (24 hr or more after the initial T1) (Pike NHC study):

1.0 T-numbers over 6 hr

1.5 T-numbers over 12 hr

2.0 T-numbers over 18 hr

2.5 T-numbers over 24 hr

These are the <u>maximum</u> changes in FT number allowed over the given time periods.

Step 9 - Current Intensity Number (CI)

- During the initial development and some stages of re-development, CI=FT
- For weakening or redeveloping systems, hold the CI to the highest FT during the preceding 12 hr, but never more than 1.0 above the current FT
- CI is never < FT!

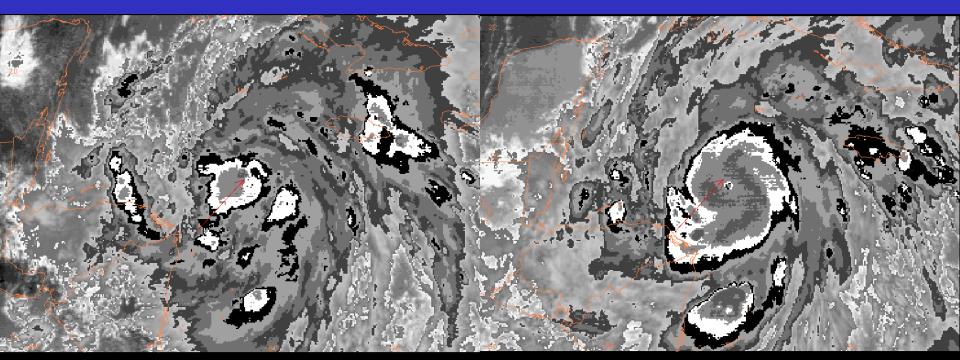
T-NUMBER ESTIMATE FROM MODEL AND DT CONSTRAINTS.										
3	4	5	6	7,8	9	1	0			
ccc	Trend	MET	PAT	FT	СІ	24-Hr.	Fcst.			
Use Rules	24-Hr change			Use Rules		Adj. N Fcst.	Model if nec.	S		
Central	D-developing W-weakening S-same	Model Expected T-Number	Pattern T-Number	Final T-Number	Current Intensity Number	List Rule Used	Forecast Intensity Number	INITIALS		

Step 9 - CI Examples (6 hr intervals)

FT/CI	FT/CI	FT/CI	FT/CI
1.5/1.5	6.0/6.0	6.0/6.0	5.5/5.5
2.0/2.0	5.5/6.0	5.0/6.0	5.0/5.5
2.5/2.5	4.5/5.5	4.5/5.5	4.5/5.5
3.0/3.0	4.0/5.0	4.5/5.0	3.5/4.5
3.5/3.5	3.5/4.5	4.5/4.5	4.0/4.5
4.0/4.0	3.0/4.0	4.0/4.5	4.5/4.5
4.5/4.5	2.0/3.0	3.5/4.5	5.0/5.0
Steady rapid development	Accelerating weakening	Interrupted weakening	Weakening, then re- development

Step 9 - What's wrong here? (6 hr intervals)

FT/CI	FT/CI	FT/CI	FT/CI
1.0/1.0	6.0/6.0	6.0/6.0	5.5/5.5
2.5/2.5	5.0/6.0	5.5/6.0	5.0/5.5
3.5/3.5	4.5/6.0	4.5/5.5	5.0/5.5
5.0/5.0	4.0/5.0	4.5/5.5	5.0/5.5
6.5/6.5	3.5/4.5	4.5/5.5	5.0/5.5
7.0/7.0	2.5/4.0	4.0/5.0	5.0/5.5
7.5/7.5	2.0/3.5	3.5/4.5	5.0/5.5


Step 9 - What's wrong here? (6 hr intervals)

Development constraints all broken	CI > 1.0 above FT	highest FT	CI needs to be held to highest FT during the past 12 hr					
7.5/7.5	2.0/3.5	3.5/4.5	5.0/5.5					
7.0/7.0	2.5/4.0	4.0/5.0	5.0/5.5					
6.5/6.5	3.5/4.5							
	4.0/5.0	4.5/5.5						
		4.5/5.5	5.0/5.5					
	5.0/6.0	5.5/6.0	5.0/5.5					
1.0/1.0	6.0/6.0	6.0/6.0	5.5/5.5					
FT/CI	FT/CI	FT/CI	FT/CI					

Why are there constraints?

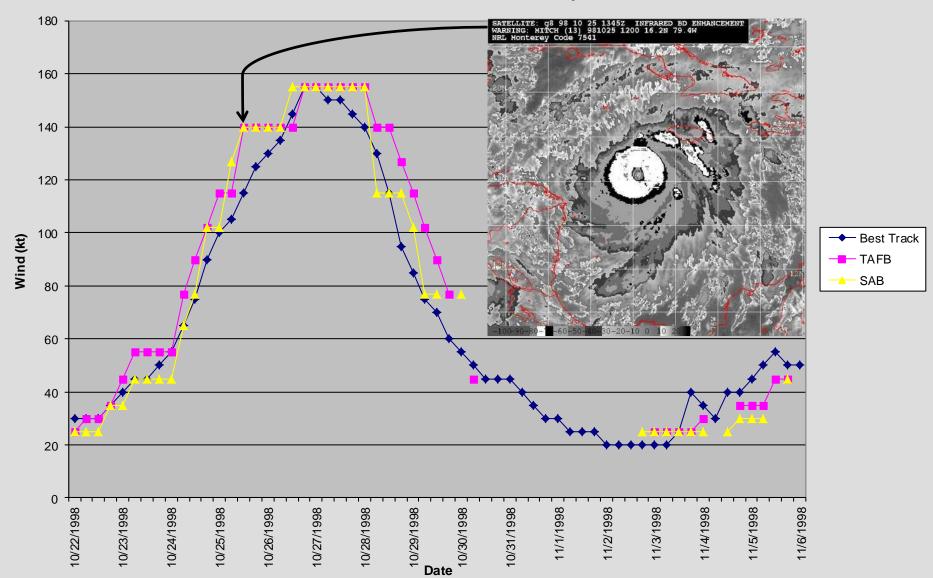
- Weak systems sometimes lose all convection during the diurnal minimum
- Cloud patterns for weak systems sometimes look unrealistically strong
- Strong systems sometimes don't intensify as quickly as the cloud pattern suggests
- In weakening systems, the decay of winds and pressures usually somewhat lags behind that of the cloud pattern
- Issue of constraints can be quite controversial

Hurricane Wilma (2005)

GOES12 TR 16.6 -81.1 20051018 1715

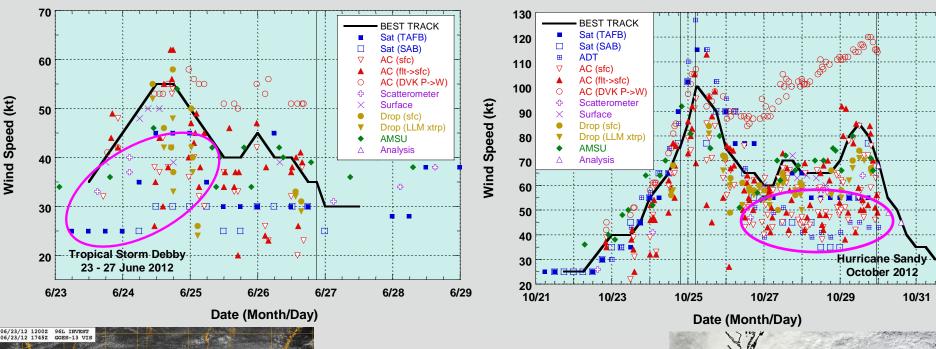
GOES12 IR 17.2 -82.4 20051019_0545

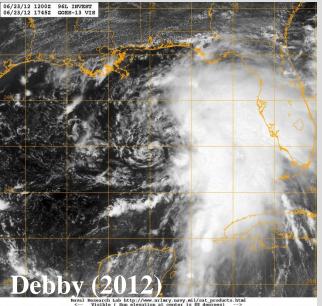
75 kt/975 mb


(Images ~12 hr apart)

150 kt/892 mb

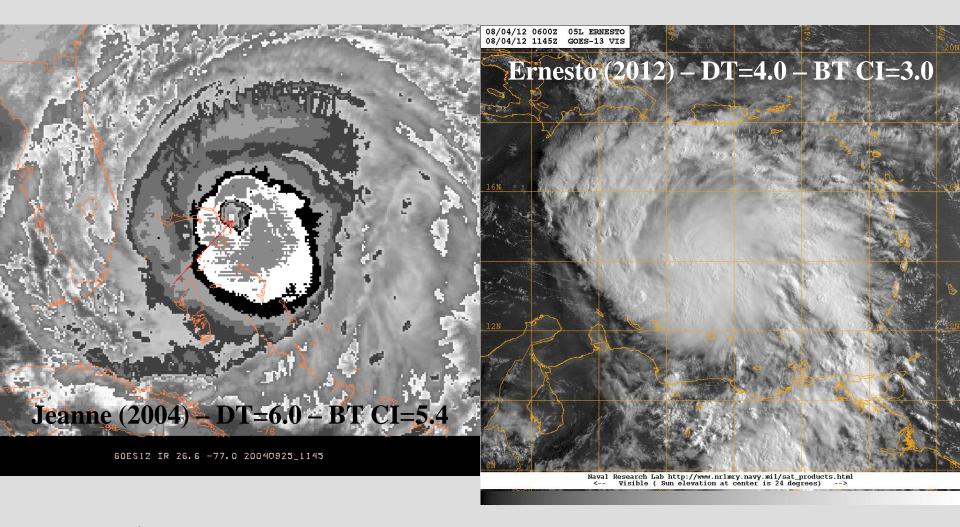
Some tropical cyclones clearly violate the Dvorak development constraints. Wilma deepened from 970 mb to 882 mb in ~12 hr.


Hurricane Mitch (1998)

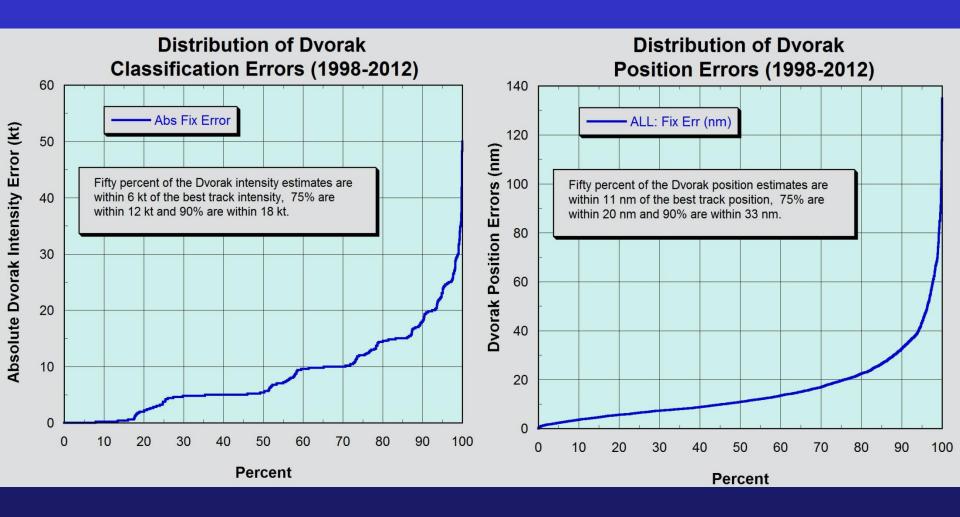

1998 Mitch BT vs. Fix Intensity

Air recon intensity lagged behind Dvorak estimates during intensification.

Cyclones Stronger Than They Appeared



Reconnaissance data showed
Debby and Sandy were
stronger than their Dvorak
intensity estimates. Dvorak
estimates are less reliable for
monsoonish cyclones (Debby)
and partly baroclinic cyclones
(Sandy).



False Alarm Strong Appearances

Reconnaissance data showed Jeanne and Ernesto were not as strong as their satellite appearance. The cloud patterns weakened after these images.

Dyorak Error Distribution

Step 10 - Forecast Intensity (FI)

- This is a 24 hr forecast of the intensity based on the current CI and satellite-observed signals in the cyclone cloud pattern and the environment
- The set of rules has not been consistent through the revisions of the technique

T-NUMBER ESTIMATE FROM MODEL AND DT CONSTRAINTS												
3	4	5	6	7,8	9	1	0					
ccc	Trend	MET	PAT	FT	СІ	24-Hr.						
Use Rules	24-Hr change			Use Rules		Adj. N Fcst.	U					
Central	D-developing W-weakening S-same	Model Expected T-Number	Pattern T-Number	Final T-Number	Current Intensity Number	List Rule Used Forecast Intensity Number		14141				

Step 10 - Forecast Intensity

Rule A - Strong
Unfavorable Signs in Cloud
Pattern:

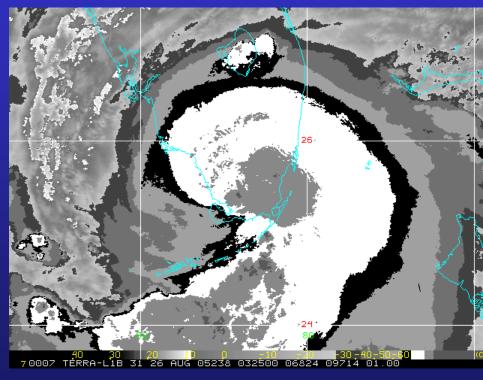
Rule B - Strong
Unfavorable Signs in
Environment:

Persistent convective warming for > 12 hr

CCC persisting for > 3 hr

Signs of shear or pattern elongation

Cyclone about to move into stratocumulus clouds


Cyclone about to move onto land

Signs of shear

Forecast: No development or half of the previous development rate (Note: These two rules can work together.)

Step 10 - Forecast Intensity Rule C - Strong Favorable Signs in Cloud Pattern

- Two successive observations of rapid development (24 hr change)
- One observation of rapid development and either a cold comma cloud pattern or multiple outflow channels
- Forecast: If FT ≤ 5.5, forecast rapid development (1.5 T-Numbers in 24 hr)

Katrina (2005) – cold comma cloud pattern

Step 10 - Forecast Intensity

Rule D Weakened
Cyclone Leaving
Unfavorable
Environment

Rule E - Cyclone
Leaving
Environment
Where
Development was
Slowed

Rule F Developing
Cyclone Leaving
Unfavorable
Environment

Cyclone leaving conditions of Rule B

Forecast previous rate of development

conditions of Rule B

Cyclone leaving

Cyclone leaving conditions of Rule B

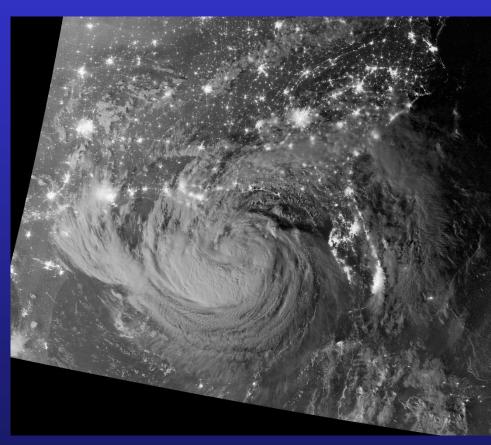
Forecast rapid development to prior maximum intensity, followed by normal development

Forecast increase of 1 T-Number per day in rate of development (YIKES!)

Step 10 - Forecast Intensity Rule G - Cyclone Peaking

- Northward moving cyclones expected to peak 4 days after first T1
- Westward moving cyclones expected to peak 6 days after first T1
- All other cyclones expected to peak 5 days after first T1
- Forecast no change in intensity
- This rule is based mostly on climatology

Step 10 - Forecast Intensity


Rule L - Large Eyes	Rule P - Persistence
For eyes 30 nm/56 km wide or larger with FT ≥ 6.0	Use when no strong signals are present
Limit FI to 6.0	Forecast trend from past 24 hr to continue

What to do for systems over land?

- Passage over land changes the TC energetics, as well as the relationship between the intensity and the cloud pattern.
- As a rule, don't classify systems over land. The Japanese Metrological Agency and the Joint Typhoon Warning Center classify systems over land, but the Tropical Prediction Center normally does not.
- There are subjective exceptions to the rule if the cyclone is close to the coast, over small islands, or over marsh land such as the Everglades or southern Louisiana. If a system is forming an eye while over land, it most likely should be classified.
- If the system moves back into the water and the classifications have been stopped, re-start classifications using the observed DT or PT

A Few More Tips

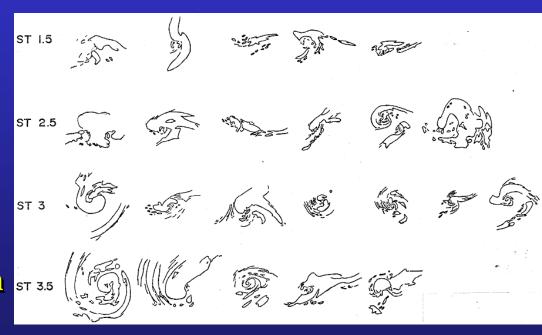
- Previous daylight satellite imagery may help locate CSCs during night shifts
- If time permits, try multiple methods of classifying one system to see if the Data-T numbers agree (e.g. curved band and CDO or VIS and IR eyes) - if they don't, use the Data-T number closest to the MET
- Some imagers (DMSP/OLS, NPP/VIIRS, upcoming GOES-R/ABI) are sensitive enough to provide moonlight visible imagery, thus allowing use of VIS cloud patterns and center location at night

Isaac (2012) NPP Satellite Day-Night Moonlight Imagery

Filling Out The Worksheet

TROPICAL CYCLONE ANALYSIS WORKSHEET																								
Vernon F. Dvorak May 1982 T-NUMBER ESTIMATE FROM MEASUREMENTS FOR DATA T-NUMBER (DT) COMPUTATION											T-NUMBER ESTIMATE FROM MODEL AND DT CONSTRAINTS													
STEP -		1	2A,B 2C 2D 2E Data T-Number					3	4	5	6	7,8	9	1	0									
DESCRIPTION -		ation	Curve	d Ban		Shear	E	ye	E40+E	-cF	CDO	Emb. Centr	nb. Computation			ccc	Trend	MET	PAT	FT	ō	24-Hr.	Fcst.	1
RULES -	Locate	Cloud	Use S	Spiral	Arc Le	ength		5.5			Use Size	The second second	CF	+BF-E	TC		24-Hr change			Use Rules		Adj. N Fost.		o l
1	System at focal	Center point of	DT 1.5	DT2.5	DT3.5	DT4.5	(VIS) Use Embedded Distance	(EIR) Use Surrounding Temperature		Eye Definition	5 0 3	(EIR) Use Surconding Temperature				110100				110103				4
	cloud c	urvature	[2]	W	~		Sing Oran	Sun	From Rules				١,			Cover	eriopi eriopi ne	- 8 Å	, ž	age.	11.6		15 to 10 to	INITIAL
DATE/TIME	LAT	LONG	[]	5)	9)	(Q	0	0	ENO	Eadj	(4)	0	CF	BF	DT	0	D-developing W-vestigning S-same	Model Expected T-Number	Pattern T-Numbs	Final T-Number	memory Argueta Argueta	15.50 15.60 15.60	Forecast Intensity Number	Z
VIS	6711	20.10	-			_										6 HR								
	25.7	64.7													1"	AVE EIR	C	-	1-	1	1			
VIS	,,,,	2.7.1														\downarrow								
8/14/1831	25.8	685	Х								- "				15		D	2	1	1.5	1.5			
115																								
8/15/1601	26.0	73 W	X		Inc	1005	ed 1	> 40 /	ruel	1,00	cor	vat.:	3 €		1.5		D	1.5	1.5	1.5	1.5			
FIE																								
8/16/112	26.2	74.3		.35			!								1.5 ±		D	2,+	2+	2.0	2.0			
VIS 167	267	75.8		.55											25			2.5	2.5	2.5	25			
E:R /1730	2262	76.0		.55					<u>.</u>						2.5	25	٥	2.5	2.5	3.5	2,5			
8/17/002	27.0	76.3		.8											3,5	3.0	D	3.0		3.0	3.0			
962	27.7	76.9		.7											3.0	3.25	D	3.0	- 4	3.0	3.0			\dashv
12.7	28,4	77.0		8											3.5	3,25		3.5	3,0	3.5	3.5		,	\dashv
V15 1831	29.3	77.Z				ļ					_l°		25	2.0	4.5		D	3.5	4.0		4.0	Ra	219	
192	29.4	77.3										MG		· .	4.0	3.75	D.	3.5	4.0	4.0	4.0	ļ		
8/18/002	29.5	77.2										LG		-	4.5	4,25	D	4.0	4.0	4.0	4.0	-		
065	30.8	76.7					<u> </u>		<u> </u>			LG	1.4		7.5	4.5	D	4.0		4.5	4.5	Ra	piq	
/22		76.6								10.74		LG	4,5	0	4.5	4.5	7	4.5		4.5	4.5	-		-
1731	32,8	76.5		WEI	[>	CF.		SEI	-	ERM		LG		.5	5.0	4.75	Ď.	5.0		5.0	5.0			
VIS 1831	33,1	76.2				_ 2	4.4		3,5	5			3.0	2	<u>5.0</u>		D	5,0		5.0	5.0			\dashv
8/19/002	34.8	74.9	<u> </u>				h	LG	19.	0			5.0	احيا	5.0	5.0	D	5.0	-	5.0	5.0	1		
067		74.1	ļ	USI	BP	7.5	RM	MG	1.5	+,5			5.0	.5	5.5	5.25		5.5		5.5 C A	5.5	-		
/37	39.8	72.2	1					MG					4.5		4.5	5.0	D	3.5	-	5.0	5.5			-
1731	41.6	7/.2						ND				MG	4,0		4.0	4,25		4.0		4.0	5.0			
VIS 1831	41.8	71.0	<u> </u>	L		<u> </u>	URV	GP.	BAN	12			L		4.0		W	14.0		4,0	5.0	<u> </u>		

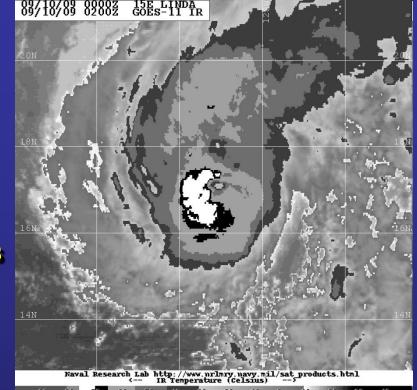
Mistakes to Avoid


- Adding BF numbers to a curved band DT!
- Placing too much emphasis on <u>IR</u> curved band, shear, and embedded center patterns over <u>VIS</u> curved band, shear, and CDO patterns
- Incorrect 24 hr trends and METs, most notably during the early stages of development
- Arbitrarily changing the development rate
- Improperly filled out worksheets and classification forms
- Not making copies of images
- Not using BD enhancement on IR images

Related Techniques

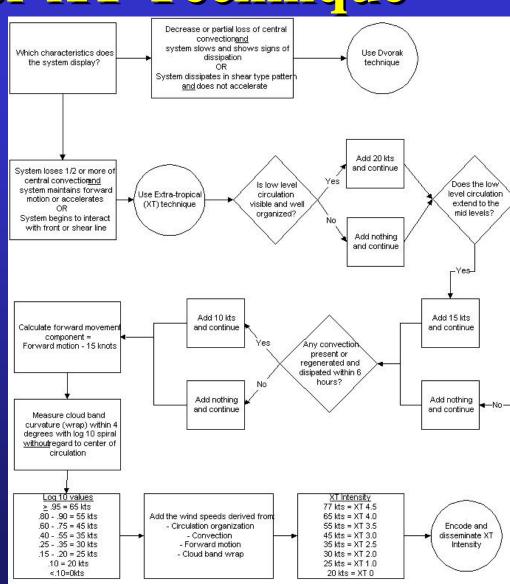
- Hebert-Poteat Subtropical Cyclones Technique
- Automated/Objective Dvorak Technique
- U. S. Military Miller-Lander XT Technique
- AMSU-based TC intensity estimates
- Satellite Consensus (SATCON) Technique
- Experimental Techniques Microwave Data and Other Approaches

Hebert-Poteat Subtropical Cyclone Technique


- Technique designed for subtropical cyclones, a 'hybrid' cyclone with characteristics of both tropical and extratropical cyclones
- It is designed as a complement to the Dvorak technique and to lead to the Dvorak technique when the cyclone acquires fully tropical characteristics
- Used operationally by satellite centers worldwide

CIMSS Advanced Dvorak Technique (ADT)

- The latest in a series of objective versions of the Dvorak technique from CIMSS
- Can provide intensity estimates on <u>every</u> satellite image of a TC some averaging is required!
- Includes Dvorak cloud patterns and some rules
- Latest version uses microwave data for improved intensity estimates of some cloud patterns.
- Automated center fixing and cloud pattern types occasionally need manual intervention.
- It is becoming operational at NESDIS/SAB, and will eventually be implemented at NHC.

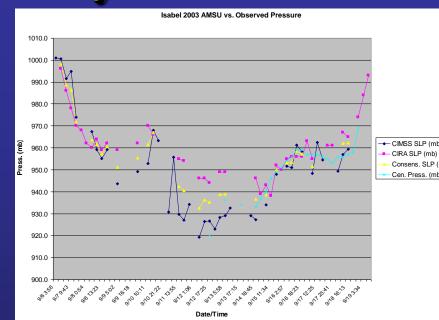


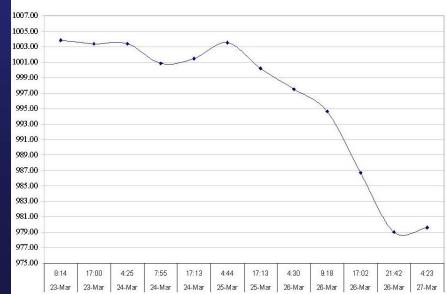
-90 -8	J - 70	-60 -5	U -4U	=30 -20 -:	10 U :	10 20	#U 4U
Date/ Time	CI	Adj. Raw	Ini. Raw	Scene	Lat.	Lon.	Fix Method
09/2330	3.9	4.0	4.0	EMBC	16.87	129.17	FCST
10/0000	3.9	4.0	4.0	EMBC	16.91	129.20	FCST
10/0030	3.9	3.9	3.9	EMBC	16.92	129.08	SPRL
10/0100	3.9	3.9	3.9	UNIFRM	16.86	129.11	SPRL
10/0130	4.0	4.4	5.5	EYE	17.02	129.14	СОМВО
10/0200	4.0	3.7	3.7	EMBC	17.88	128.97	SPRL
10/0230	4.0	4.5	5.5	EYE	17.10	129.10	SPRL
10/0300	4.1	4.4	5.6	EYE	17.15	129.03	SPRL
10/0330	4.1	4.5	5.8	EYE	17.20	129.07	SPRL

http://cimss.ssec.wisc.edu/tropic2/misc/adt/info.html

Miller-Lander XT Technique

- Technique designed for tropical cyclones undergoing extratropical transition, when the Dvorak technique can produce unrealistically low intensities
- Like the Hebert-Poteat subtropical cyclone technique, it is a complement to the Dvorak technique
- Used operationally by the U. S. military tropical cyclone sites

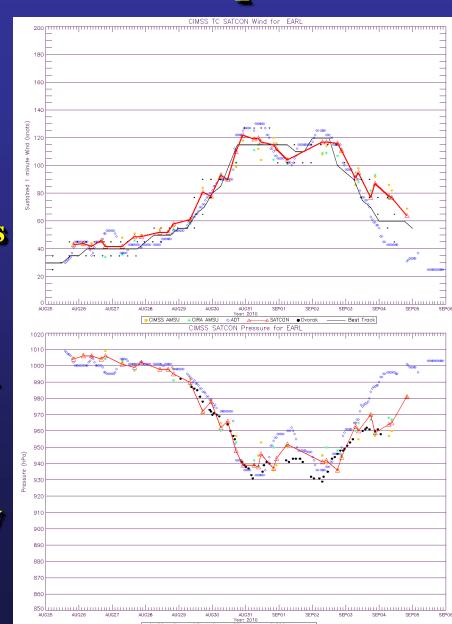



XT Technique Flowchart

Note: Start in the upper left corner and determine the appropriate technique. If Dvorak, use NOAA/NESDIS 11. If XT, follow flowchart to intensity

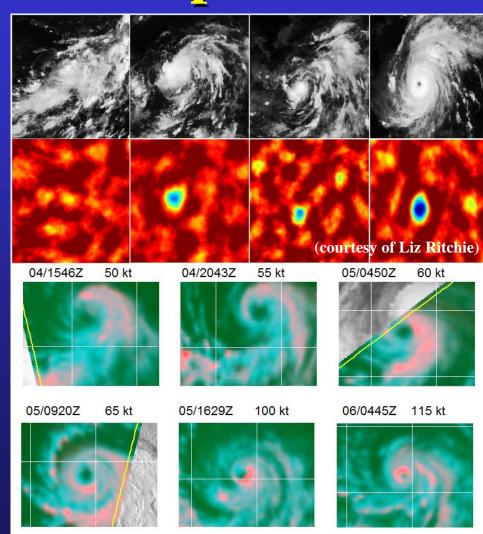
AMSU-Based Intensity Estimates

- AMSU Advanced Microwave Sounding Unit on NOAA/METOP Polar Orbiters
- AMSU measures temperatures of the warm core at the top of a TC and derives the intensity from the core strength
- Sounder footprint is 50 km problem with undersampling small TC cores
- AMSU estimates also suspect for subtropical systems, which have a different thermal structure
- NHC uses two AMSU algorithms one from CIMSS and the other from CIRA
- Similar algorithms are being developed for SSM/IS and ATMS microwave sounder data



CIMSS AMSU for Brazil Tropical Cyclone

CIMSS SATCON Technique


- ADT and AMSU intensity estimates work well for certain ranges of TC intensity, structure, and satellite scanning geometry and less well for others
- Weighted averages of the estimates may produce a better result than any of the individual components. This is the basis of the CIMSS Satellite Consensus (SATCON) technique.
- SATCON is used experimentally at the NHC.

http://cimss.ssec.wisc.edu/tropic2/real-time/satcon

Experimental techniques and other possible future developments

- Ritchie Deviation Angle Variance Technique
- Microwave-imagery-based equivalents of the Dvorak technique
- Dvorak-like techniques based on multispectral imagery (METEOSAT-Second Generation, GOES-R)

Precipitative ring feature formed about 04/20Z (courtesy of Margie Kieper) 24-hr intensity increase between 05/00Z and 06/00Z was 55 kt

Acknowledgements

- Vernon Dvorak creator of the technique and of much of the material in these presentations
- Max Mayfield (former NHC director) the previous teacher of the technique whose class material was the foundation for these presentations
- Ray Zehr (formerly of the Cooperative Institute For Research in the Atmosphere at Colorado State University) – several examples are from his Dvorak training module
- Andrew Burton (Australia Bureau of Meteorology) whose comments helped improve the presentations
- Todd Kimberlain (NHC) collaborator in updating these presentations
- James Franklin and Dan Brown (NHC) Dvorak Technique error slide
- The Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin many satellite images and related technique material
- The Naval Research Laboratory, Monterey, CA satellite images
- NASA satellite images
- Mark Lander (U. of Guam), Liz Ritchie (U. of Arizona), Margie Kieper (FIU) for related technique material