Update on International Storm Surge Activities at RSMC Miami

Brian Zachry and Jamie Rhome WMO RA-IV RSMC/CIFDP-C System Developer

WMO CIFDP-C

- Coastal Inundation Forecasting Demonstration Project (CIFDP) initiated by Joint WMO-IOC Technical Commission for Oceanography and Marine Meteorology (JCOMM)
- At the 5th meeting of the CIFDP Program Steering Group (May 2014, Geneva), the previous Sub-Project for Dominican Republic (CIFDP-DR) was re-scoped for a Caribbean/regional approach and denoted CIFDP-C
- CIFDP-C will be initially demonstrated and tested for the Dominican Republic and Haiti
- Develop SLOSH products for planning, preparedness, and forecasting
- RSMC Miami will provide the leading technical contribution, in collaboration with the PSG and other partners
- Fully funded by USAID (1.2 Million U.S. Dollars)

WMO CIFDP-C Participants

RSMC Miami Jamie Rhome CIFDP-C System Developer Brian Zachry CIFDP-C Project Manager Ethan Gibney CIFDP-C Grid Builder

NWS Environmental Modeling Center Andre Van der Westhuysen and Dongming Yang CIFDP-C Modelers

Florida International University Keqi Zhang CIFDP-C DEM and Grid Builder

Why the Need for a Demonstration Project

 Almost 50% the deaths are due to storm surge

Over 80% of deaths are due to water

 Wind causes less than 10% of deaths

Edward N. Rappaport, 2014: Fatalities in the United States from Atlantic Tropical Cyclones: New Data and Interpretation. Bull. Amer. Meteor. Soc., 95, 341-346.

CIFDP-C Demonstration Project Plan

Phase 0 2013-2014	Phase 1 2015	Phase 2 2016	Phase 3 2017	Phase 4 2018
Project Scoping and Prenaration:	Project Planning and Design:	System Development:	System Validation:	System Integration and Training:
Definitive National Agreement (DNA), training, and initial data	Stakeholder workshop, establish National Coordination	Digital elevation model (DEM), SLOSH/wave grid creation and quality control, and model	MOMs/MEOW creation, QA/QC, and model validation	System implementation, project evaluation, specialized training workshop
inventory	regional buy-in, initial project design/setup (Mexico demo)	development Develop Training modules	training modules	Project evaluation and recommended application to region (RA-IV)

Specialized Storm Surge Training

- First-ever international storm surge modeling workshop held at NHC/FIU in January 2015, funded by the WMO
- Students consisted of various Nations from the WMO RA-IV region plus participants from the Philippines (PAGASA) and JMA
- Specialized training focused on setting up, running, and analyzing SLOSH model results and required data sets necessary for properly setting up and validating a storm surge modeling system
- NHC gathered feedback from workshop participants to lay foundation for CIFDP-C system design and implementation in member Nations

CIFDP-C Project Kickoff and NCT Meeting in Dominican Republic

Hispaniola Demonstration Project Phases

Phase 0 2013-2014	Phase 1 2015	Phase 2 2016	Phase 3 2017	Phase 4 2018
Project Scoping and Preparation:	Project Planning and Design:	System Development:	System Validation:	System Integration and Training:
Definitive National Agreement (DNA), training, and initial data	Stakeholder workshop, establish National Coordination Team (NCT)	Digital elevation model (DEM), SLOSH/wave grid creation and quality control, and model	MOMs/MEOW creation, QA/QC, and model validation	System implementation, project evaluation, specialized training workshop
inventory	regional buy-in, initial project design/setup (Mexico demo)	development Develop Training modules	training modules	Project evaluation and recommended application to region (RA-IV)

MEXICO DEMONSTRATION PROJECT

Mexico Storm Surge Demonstration Project

- Collaboration between RSMC-Miami, Florida International University, and the Coastal Processes and Engineering Laboratory of the Sisal Academic Unit of the Engineering Institute of the UNAM
- Explore the feasibility of using SLOSH within WMO RA-IV:
 - Initial scoping project in the Yucatan
 Peninsula due to data availability
- Establish a technical foundation for the CIFDP-C
- Establish a framework for sharing storm surge modeling expertise and data between RSMC Miami and RA-IV member nations

SLOSH Basin for Yucatan Peninsula

- First ever SLOSH basin for the Yucatan Peninsula
- Working to understand IT requirements and data necessary to develop SLOSH within Mexico
- LIDAR data supplemented with ETOPO1 (1.8 km) global relief model for topography and bathymetry data

Mexico Storm Surge Demonstration Project Category 3 MOM (Mean Tide)

CIFDP-C DATA COLLECTION AND DATA ASSESSMENT

FIU Surveyed Areas in Dominican Republic

Boxplots for Grid Elevations and Survey Elevations for all Sites

Grey area represents the 25th to 50th percentiles; yellow 50th to 75th

TanDEM-X

TanDEM-X Data Availability

- Availability as of March 2016
- Estimated cost: ~100K U.S.
 dollars for study area
- Working with NWS
 International Affairs and FIU
 to establish an agreement
 regarding data sharing and
 savings for CIFDP-C

Raw TanDEM-X: Santo Domingo Airport

Topography Data Comparison: Miami, FL

Topography Data Comparison: Miami, FL

TanDEM-X Data for Hispaniola

DTM Creation: Torbeck, Haiti

DTM Comparison: Torbeck, Haiti

Profile Location

Bathymetric Data

- NOAA single and multibeam sounding surveys
- NOAA Tsunami program
- CIFDP-C NCT data collection
- IOC bathymetry
- <u>Already incorporated</u> <u>into model grids</u>

Supplemental Information

NOAA Global Shoreline

Global 30m Land Cover from China

CIFDP-C SYSTEM DEVELOPMENT

CIFDP-C System Development

- Implement a coupled storm surge and wave modeling system
 - SLOSH hydrodynamic model
 - Wave model recommended by IOOS modeling testbed

- Develop products for planning, preparedness, and forecasting
 - SLOSH MOMs and MEOWs
 - Same display system as employed by RSMC-Miami (SLOSH Display Program)
- Provide specialized training programs on how to use the storm surge products for planning and preparedness

Leveraging U.S. Modeling Testbed for Puerto Rico and the Virgin Islands

- Evaluate wave/surge operational modeling/forecasting in steep-sloped regions such as the Caribbean
- Features regional-scale and nearshorescale field cases using SWAN wave model
- Broad participation from academic and operational communities with a wide range of surge and wave models
- Conclude with recommendations for operational environment and facilitate the transition to NOAA's National Hurricane Center

2nd Generation Wave Model for SLOSH

- Initial model development and evaluation of a 2nd generation wave model to couple with SLOSH
- Selected the Great Lakes Wave Model and began adding wave physics parameterizations
- Model uses simplified physics, but is cheaper computationally than SWAN or WW3
- More suitable to couple with SLOSH than SWAN

$$\frac{\partial \vec{M}}{\partial t} + \vec{v} \cdot \nabla_{x,y} \vec{M} = \vec{\tau}_w$$

$$\vec{\tau}_w = 0.028\rho_a D_f |\vec{U} - 0.83C_p| (\vec{U} - 0.83C_p)$$

$$\sigma^{2} = 6.23 \times 10^{-6} \left(\frac{f_{p}U}{g}\right)^{-10/3} \frac{U^{4}}{g^{2}}$$

Wave Model Discretization

Wind Sea:

Swell:

 $\frac{\partial E_W}{\partial t} + \frac{\partial C_g \cdot E_W}{\partial x} = S_{wind} + S_{diss}$ $\frac{\partial E_s}{\partial t} + \frac{\partial C_g \cdot E_s}{\partial x} = S_{diss}$

- Wind seas (E_w) : grows when angle between wave direction and wind direction is < 90°, and wind velocity is larger than phase velocity
- Swell transition: associated wind sea wave energy now propagates without further generation and is treated as swell energy (E_s)
- Swell frequency: equals corresponding wind sea frequency at the point when the wave growth ends
- Total variance: adding E_w and E_s for each wave direction and integrating through all directions

Parametric Wave Model Test Case

- Hypothetical Category 5
 Hurricane
- Storm center crosses
 Puerto Rico from the
 South to the North
- Maximum wind speed around 65 m/s

Wave Height Comparison

SWAN Model, Runtime=12hr

Parametric Wave Model, runtime=70 min

🔰 @NHC_Surge

12m

Wave Radiation Stress Comparison

Wave Height Comparison

Wave Model Coupling to SLOSH

Parametric Wave Model

- SLOSH is driver, with parametric wave model as a subroutine
- Compiled into single, efficient executable
- To be used for computation of MEOW surge/inundation envelopes

SLOSH Grid Development

- Tested different SLOSH basin configurations for optimal grid resolutions in main areas of interest
- Developed an initial SLOSH basin for testing and evaluation of run times and stability analysis
- Evaluated current data requirements, data availability, and data gaps

SLOSH Model Results

SLOSH Category 5 Hurricane Moving NW at 20 mph

River Coupling Methodology: Ozama River

Accurate and Timely QPE for CIFDP-C?

- Many countries in Latin America, including DR, lack timely and accurate Quantitative Precipitation Estimates (QPE)
- While QPE products are available from GOES satellites, accuracy typically suffers in tropical environments and areas of complex terrain.
 - Dissemination is a challenge
- GOES-R will provide improved QPE
 - Baseline rainfall rate product from ABI IR brightness temperatures will be calibrated in real time against microwave-derived rain rates to enhance accuracy.

TRAINING MODULES AND OUTREACH MATERIAL

Dissemination and Data Availability

- NHC will host the CIFDP-C MOMs on an online web portal for high-resolution inundation mapping
- Provide GIS data
- Map services

SLOSH Display Program

Demo

Translation of Outreach Material

Translation of Existing COMET Modules to Spanish and French

Tropical Cyclone Forecast Uncertainty

Storm Surge Forecasting

NHC's Storm Surge Unit

Jamie Rhome, Team Lead Dr. Brian Zachry Tarah Sharon William Booth Ethan Gibney Cody Fritz Laura Paulik Taylor Trogdon

ncep.nhc.ssmia@noaa.gov (305) 229-4448 <u>hurricanes.gov/surge</u> @NHC_Surge

