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One Timeline of TC Genesis in Operational Models

Through mid 1990s: Operational numerical models were too coarse in grid

Late 1990s:

1999:

Early 2000s:

Mid 2000s:

2010s:

spacing to produce TCs from nothing

Operational grid spacing decreased sufficiently that TCs were now possible
to form during the forecast... however.....1it appears that the physics in the
models hadn’t yet been sufficiently calibrated to the improved grid

spacing because....

Jack Beven documents the “boguscane” problem — the MRF/AVN was
seemingly on steroids regarding TC Genesis in the Atlantic culminating in
1998/1999 (this is a bigger problem than just too many TCs!)

The boguscane problem was greatly reduced with improvements
In physics in the models

Operational models began to have some reliability with TC
formation, although with very idiosyncratic behavior

Idiosyncratic behavior reduced some (but remained), leading to the
possibility for the first time of statistical guidance on TC formation that
exploited this biased, but repeatable, behavior.



What to look for in the models for genesis?

Although operational models today may not capture all known and unknown
key processes for genesis, often there is a broader scale reflection if a TC is
forming in the model. Key thresholds on the broader scale of:

— SLP minima, SLP gradient

— Low-mid level wind field, Low-mid level vorticity

— CAPE

— Thickness, etc.

So, it makes sense to compare various thresholds of the above to the probability
of a known TC forming in a model or group of models

Based on the idiosyncrasies mentioned earlier, each model would likely have
different thresholds or even different key predictive variables.

— Just because a model may have a bias regarding genesis frequency doesn’t mean that
It is not useful statistically. In fact those can be the most useful models statistically.

Produce logisitic regression equations that provide well-calibrated probabilities
of TC formation using those model fields.

— Further improve the guidance by intercomparing multiple models
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 Verification revealed well-calibrated forecasts
In forecast probability intervals > 50%.
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Summary

Resulting JHT-funded Guidance: Tropical Cyclone Logistical Guidance for
Genesis (TCLOGG)

Well-calibrated probabilities for the CP, EP, and ATL basins

Things can go awry when there are major changes in a given model, or if a
specific model disappears (e.g. NOGAPS changes to NAVGEM and GFS
changes to FV3-GFS).

Real-time web page for these probabilities are available using the CMC, GFS,
(soon) NAVGEM, and UKMET raw output

http://moe.met.fsu.edu/modelgen

Probability equations are updated every year, and use between 5 and 9 years of
model output.

New developments coming in the next 2-3 years



Part 2: The Analysis and Prediction
of Hybrid Cyclones and Structural

Transition

Robert Hart, Florida State University
rhart@fsu.edu

“Subtropical
- _Qustav”

9 Sep 2002

WMQO2019 30 April 2019



We are taught in class about two
mutually exclusive cyclone “worlds”™

« Extratropical cyclones
— Exist in the midlatitudes to polar latitudes
— Form through the interaction of upper level disturbances with surface fronts/lows
— Intensify through baroclinic instability (e.g. QG Height tendency)
— Flow is to first order is on isentropic surfaces
— Convert APE to EKE
— Minimal role of diabatics at least conventionally
— Shear is essential to structure through thermal wind balance

« Tropical Cyclones
— Generally exist in the tropics to subtropics
— Form through potentially various methods of organizing convection
— Intensify through flux induced latent and sensible heat release

— Flow is to first order isothermal at low levels and then angular-momentum conserving
in eyewall and anticyclone

— Convert diabatic heating to PE and KE
— Shear is destructive given the barotropic, generally axisymmetric nature of vortex



Quiz: Separate the 5 tropical cyclones from the 5 extratropical

Images
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Quiz 2: The sometimes helpful, sometimes perilous reliance on
time of year, geography, and SST for assuming structure

MSLP (mb) on ?
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Example of misleading geography:

NHC Best Track from Beven (2001)



Hurricane Michelle (2001):

GOES 8 V|S|ble Imaqgery




Hurricane Michelle (2001):

GOES 8 V|S|ble Imaqgery




Hurricane Michelle (2001):
GOES-8 Visible Imagery




Some relevant questions. ..

What makes a cyclone warm or cold-core?

If all low pressure areas result from a column of air that is on
average warmer than its environment, how can there be cold-core
cyclones?

What are the hydrostatic consequences of this thermodynamic
structure & the resulting profile of cyclone “strength™?

What about existence of mixed phase cyclones?

Why the fuss? 60 knots is 60 knots!

Let’s first take a step back and reexamine the textbook structures



Classic warm-core cyclone: TC
Hurricane Bonnie (1998) Temperature Anomaly

Low pressure results
from column of air on

average warmer than
6km  environment, with the
anomalous warmth in

the troposphere

Source:
1km Advanced Microwave
SRy Sounder (AMSU)
Temperature Anomaly

Image courtesy Mark DeMaria, CIRA/CSU
www.cira.colostate.edu/ramm/tropic/amsustrm.asp



Classic warm-core cyclone: TC

Height (m) TC Height Field (m)
from hydrostatic
balance

12000

Warm: expansion of
10000 ————— 10000 Su rfaCeS

Cold: contraction of
height surface




Classic warm-core cyclone: TC

Height anomaly from
zonal mean shaded

Height anomaly
Increases with
altitude In
troposphere




Classic warm-core cyclone: TC

« Intensifies through: sustained convection, surface fluxes.
« Cyclone strength greatest near the top of the PBL

— Gradient wind balance In a convective environ.
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Classic cold-core cyclone: EX

S e

tratropical

=

Cleveland Superbomb Temperature Anomaly

Temperature Anomaly (C) for a mature extratropical cyclone
Cleveland ‘Sumperbomb (26. January 1978
Longitudinal ¢ross section at 40°N

Low pressure results
from column of air
on average
warmer than
environment, with
the anomalous
warmth in the
stratosphere

Pressure (hPa
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Classic cold-core cyclone: Extratropical

N1978:2.5°

Height anomaly from
zonal mean shaded

Height anomaly
decreases with
altitude In
troposphere
(0K |
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Classic cold-core cyclone: Extratropical

Intensifies through: baroclinic development, tropopause
lowering.

« Cyclone strength greatest near tropopause
= QG theory in a minimally convective environ

Stratosphere

/| Troposphere ’

Warm

Height anomaly



Hybrid (non-conventional) cyclone

What if an occluded extratropical cyclone moves over warm water?
Characteristics of tropical and extratropical cyclones.

Stratosphere

lllllllllllll
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Examples of nonconventional cyclones: Past research

Tannehill (1938): 1938 New England Hurricane
Pierce (1939): 1938 New England Hurricane
Knox (1955): Hurricane Hazel

Palmén (1958): Hurricane Hazel

Simpson (1972): “Neutercanes”

Hebert & Poteat (1975): Subtropical cyclones
Kornegay & Vincent (1976): T.C. Candy

Bosart (1981): President’s Day Snowstorm
DiMego & Bosart (1982): Hurricane Agnes

Gyakum (1983): QE2 Storm

Shapiro & Keyser (1990): Warm seclusion extratropical
Bosart & Lackmann (1995): Hurricane David

Beven (1997): Cyclone diagram, Hybrid cyclones, Mediterranean
Miner et al. (2000): Hurricane “Huron”

Thorncroft & Jones (2000): Hurricanes Iris & Felix



Non-conventional cyclones: Examples

Pierce 1939

Began as intense tropical cyclone

Rapid transformation into an intense
hybrid cyclone over New England
(left)

Enormous damage ($3.5 billion adjusted
to 1990). 10% of trees downed in New
England. 600+ lives lost.

Basic theories do not explain a frontal
hurricane






Non-conventional cyclones: Examples

Christmas 1994 :
Hybrid New England Storm

Classic (prior to Sandy) example of how track,
structure, intensity and eventual impacts are related.

Gulf of Mexico extratropical cyclone that acquired
partial tropical characteristics

A partial eye was observed when the cyclone was
just east of Long Island

Wind gusts of 50-100mph observed across southern
New England

Largest U.S. power outage (350,000) since Andrew
in 1992

Forecast 6hr earlier: chance of light rain, winds of 5-
15mph.
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Why is the structure of a cyclone important?

Predictability is a function of structure
Model interpretation/trust is a function of structure

It Is often not at first apparent what the model is
forecasting, or the nature of cyclone development

Potential intensity is a function of structure

Tropical Cyclones
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Impact i1s a function of structural evolution and interaction

Fran (1996):No transition

Floyd (1999).
Transition from
pos. tilt trough

Storm Total Precipitation
n Inches

Hurricane Fran
September 5-8, 1996

rm Tolal Precipitation in Inches. Hurricane Fran, September 3-8, 1996,

Analysis courtesy
NOAA/NWS/NHC

Analysis courtesy
NCAR/NCEP
Reanalysis-2

Hazel (1954).
Transition from a
neg. tilt trough

{3hr track
intervals)

- 200 mm

150-200 A"

Analysis courtesy
Jim Abraham, CHC




Significance:

 Classification

« Better understanding of the current state

« Applying conceptual models or designing new ones
« The type/extent of expected impact/damage

« Quantifying potential for intensity change and its uncertainty
— Scales of motion dependence
— Maximum intensity

« How can intensity change be forecast if there is great structural uncertainty?

Amount of intrinsic (mis)trust of numerical model forecasts

—> Need a diagnosis of basic cyclone structure that is more
flexible than only tropical or extratropical



Goal:
A more flexible approach to cyclone characterization

—To describe the basic structure of tropical,
extratropical, and hybrid cyclones simultaneously
using a cyclone phase space.

Phase Space

Parameter B

Parameter A



Cyclone Parameter 1: Vertical structure
-V+: Thermal Wind [Warm vs. Cold Core]

l Warm core Hybrid Cold Core :
300mb
- |+ - 1 + - i+
600mb
900mb

Height anomaly Height anomaly Height anomaly



Cyclone Parameter -V;. Thermal Wind

Warm-core example: Vertical profile of
Hurricane Floyd 14 Sep 1999 Zyias-Zyy i proportional
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Cyclone Parameter -V;. Thermal Wind

Cold-core example:
Cleveland Superbomb 26 Jan 1978

CLE Superbomb 06 N1978:2.5° NCAR Reanalysis at 40
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Cyclone Parameter 2: Horizontal structure
B: Thermal Asymmetry

Symmetric Hvbrid Asymmetric

9 Sep 2002

21:45 UTC
4
7
¥ f ¢
1 A
§ X
;‘ T
i % i
A
£ v
P i r A
/s ’
y Hurricane Floyd 7. b
g s

W NOAA-15 AVHRR HRPT
# Multi-spectral False Color Image
September 14, 1999.@ 1244 UTC

- y
[ololob=4 METEOSAT3 02 13 MAR




Cyclone Parameter B: Thermal Asymmetry

 Defined using storm-relative 900-600hPa mean
thickness field (shaded) asymmetry within 500km
radius:

B = ZGOOhPa — Z9OOhPa - ZGOOhPa — Z9OOhPa ]

Warm

B>>0: Frontal B=0: Nonfrontal



Cyclone Parameter B: Thermal Asymmetry

Conventional Tropical cyclone: B ~0

Forming Mature Decay

Conventional Extratropical cyclone: B varies

Developing Mature Occlusion

B>>0



Cvclone Parameters Overview: B

Hurricane Floyd: 12Z14SEP1999 1.0° NOGAPS Analysis

900—-600hPa
Thickness
B = 72m

Cleveland Superbomb OGZZSJAN1978 2 5° NCAR Reonolysss

oo —600hPa



Constructing Phase Space



Constructing 3-D phase space from cyclone
parameters: B, -V, -VY

A trajectory within 3-D generally too
complex to visualize in an
operational setting

— Take two cross sections (slices) :




.S Phase Diagram 1

==, Thermal Asymmetry versus Lower-Tropospheric
Thermal Wind

Symmetric warm core
e« B<10and-V >0 General locations of cyclones within phase space
T

— Tropical cyclones,
warm seclusions

Asymmetric warm core

— Hybrid cyclones, warm
seclusions
— Most cyclones

undergoing ET found
here

Developing/mature
extratropical cyclones

Asymmetric/

Frontal

Hybrid cyclones,
warm-seclusion
cyclones
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— Occluded extratropical Cold Core 0 Warm Core 300

cyclones v
Asymmetric cold core
— Developing or mature
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Slide courtesy of Dr. Mike Brennan, NHC
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Phase Diagram 2
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Hurricane Mitch (1998)
Case of symmetric, warm-core development and decay

Classic tropical cyclone



Symmetric warm-core evolution:

MITCH(1998) [1* NOGAPS Analysis]
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Symmetric warm-core evolution: Hurricane Mitch (1998
Slice 1: B Vs. -VIL
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mmetric warm-core evolution: Hurricane Mitch (1998
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mmetric warm-core evolution: Hurricane Mitch (1998
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December 1987 Extratropical Cyclone
Case of asymmetric, cold-core development and decay

Classic occlusion of an extratropical cyclone



Asymmetric cold-core evolution:

DEC1987(1987) [2.5° NCAR/NCEP Reanalysis]
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Asymmetric cold-core evolution: Extratro

Slice 1: B Vs. -V;-
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mmetric cold-core evolution:
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mmetric cold-core evolution: Extratropical Cyclone
Slice 2: -V;t Vs, —-VY
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Hurricane Floyd (1999)
Multiple phase evolution:

Case of extratropical transition of a tropical cyclone



Warm-to-cold core transition:
Extratropical Transition of Hurricane
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Warm-to-cold core transition:
Extratropical Transition of Hurricane Floyd (1999)
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ET Phase Trajectory Example: NWATL

BONNIE(1998) [1.0° NOGAPS Analysis]
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ET Phase Trajectory Example: NEATL
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YANCE {1999) [1* NOGAPS Analysis] 100E 110E 120 1306 140E  1BDE

Start (ZA): 12Z16MAR1898 (Tue
End (7] 12Z24MAR1998 (Wed

125

Asymmetric
(Frantal}
)
2

ASYMMETRIC COLD—CORE

Irtensity (hPal:
1015 G980

ASYMMETRIC WaRM-— CORE 1010

10085

1600 f?m}“ ,iﬁE 55150 - VANCE (19499) [1* NOGAPS Analysig]

Q958 shadad

D80 9B5 = Start (ZA}: 1271BMARTGSG Tue%
SAS 850 End (73 12724WMAR1999 (Wed

kean radiua of

925hPo gole
force wind (krnj:
<100

=]
wn

L=ee)

SYMMETRIC SOLD—CORE

Symmetric
iManfrantal}

DEEP WaRM CORE Intensity (hPaj:
200 1186 =80
-500 —400 —300 —200 —100 0 100 200 00 1919

Cold Core Worm Care 1005

—V+ [900—B00hPa Thermal Wind] - e

7E0 ul=l=3

990 255
SHALLOW WARM-CORE dHS 850
lMean radiua of

[ |
o
=
T
£
£
7]
1
al
4
=
X
A
i
'—
Y
>
2
=
0
o

I
£
£
3

2
7l
a
a
<
<@
]
7s]

I

<@

o]
el
1]

1
Lrd
[
[}

DEEFP GOLD CORE

—Vvy* [60DhPa—300hPa
Cold Core

-E00  —400 300 -200 —100 0 100 200
Caold Core Warrm Core

-V [200hPa—-8Q00nhPa Thermal Wind]




Cvclone Parameters Overview: B

Frior to peak tropical intensity

-

X sT T s 1 2 3 4 |
NHC Best—Track Cyclone Phase/Intensity

Evans & Hart 2003




S North Atlantic ET Climatology

Number and percentage of North Atlantic TCs undergoing ET

by month 1899-1996
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Hart and Evans (2001) Journal of Climate
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Latitudinal
distribution of ET
In North Atlantic
varies widely:

| July through
Sept: 40-50°N

Earlier and later
In the season:
35-40°N

Hart and Evans (2001) Journal of Climate _
Slide courtesy of Dr. Mike Brennan, NHC




Hurricane Olga (2001)
Multiple phase evolution:

Case of tropical transition of a cold-core cyclone



Cold-to-warm core transition:
Tropical Transition of Hurricane Olga (2001)
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Summary of cyclone types within the phase space

General locations of cyclones within phase space
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extratropical cyclones

8
=
L
=
=
7
=T,

Frontal

=

Hybrid cyclones,
warm-seclusion

cyclones

Z

Occluded extratropical cyclones Tropical cyclones,

warm-seclusion
cyclones

Cold Core 0 Warm Core 300

VL

Symmetric/
Nonfrontal
-




Summary of cyclone types within the phase space

General locations of cyclones within phase space
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Real-time web page

http://moe.met.fsu.edu/cyclonephase



Real-time Cyclone Phase Analysis & Forecasting

Phase diagrams produced in real-time for
various operational and research models.

Provides insight into cyclone evolution that
may not be apparent from conventional
analyses

Web site: http://moe.met.fsu.edu/cyclonephase

Also available a historical archive of CPS
diagrams for nearly 200 cyclones


http://moe.met.fsu.edu/cyclonephase




Cyclone Phase Web Page Overview
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Cyclone Phase Web Page Overview
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Cyclone Phase Web Page Overview

Trajectory through phase space describes structural evolution
— A =When cyclone was first detected
— C = Current analysis time
— Z = Cyclone dissipation time or end of model forecast data
— A—C = cyclone structural history
— C—Z = cyclone structural forecast
— Date is labeled at 00Z along phase trajectory

Color of trajectory gives cyclone intensity in MSLP
Size of marker gives average radius of 925hPa gale-force wind
Cyclone track & underlying SST provided in inset

Phase diagram quadrants are shaded to give more rapid interpretation



Ensemble cyclone phase

 Four sets of ensembles are produced:

— All available deterministic models initialized
within 6hr of each other

— 20 GFS Ensembles

— 20 CMC Ensembles

— 20 NAVGEM Ensembles
— 60-member combination

 All aim to provide forecast guidance for
structural uncertainty



Multiple model solutions:
Measure of structural forecast uncertainty
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Multiple model solutions:
Measure of structural forecast un_certaint
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Hurricane Michelle (2001): Calibration from
AMSU-based Phase Diagnhostics

AMSU-derived 900-600hPa Thickness {m) & MSLP(hPa)
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Hurricane Michelle (2001): Calibration from
AMSU-based Phase Diagnostics
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The human element
» CPS diagrams:

— Most helpful in the context of a firm understanding of cyclone development
theory

— Most helpful with an understanding of the strengths & limitations of NWP
models

— Most helpful with an understanding of individual model biases

— Most helpful with a synthesis with all other tools available
— Do not describe the finer (mesoscale) detail of storm evolution

— While the diagrams are objective, their interpretation can still be subjective
and dependent on forecaster model experience and conceptual models
learned



Other Past/Current CPS Uses

Tropical cyclone genesis diagnosis/forecasting
Subtropical cyclone genesis diagnosis/forecasting
Timing of extratropical transition

Timing of tropical transition

Diagnosis of structural predictability

Diagnosis of when to switch NEXRAD radars to
tropical mode



Phase space limitations

Cyclone phase diagrams are dependent on the quality of the
analyses upon which they are based.

Three dimensions (B, -V-1, -V+Y) are not expected to explain all
aspects of cyclone development

It cannot inform you directly on why a cyclone has evolving
structure or transitioning. This is why the diagrams must never
replace, but instead supplement, traditional analyses and cross
sections

However, the chosen three parameters represent a large
percentage of the variance & explain the crucial structural
changes.



Often model analysis representation Is poor
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Often model analysis representation Is poor
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“Instant” Warm-Seclusion Dilemma:
Hurricane Sandy (2012)
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Model sensitivit

 Often there Is phase dependency on the type of
data assimilation or model physics

11 November 2003 GFDL vs AVYN
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Other approaches to ET

» The cyclone phase space approach has as another
limitation that it requires three-dimensional data to
calculate

» Other equally useful approaches (specifically to
ET) have been designed that have lead to
conceptual models based largely on satellite
Imagery

« Example: Klein et al. (2000)



\ Satellite-Imagery Based Conceptual Model (&4

el Klein et al. (2000)

« Examined satellite imagery and NWP analyses
for 30 cyclones undergoing ET in the Northwest

Pacific 1994—-1998

* Three step transformation stage

— Begins when cyclone starts to interact with baroclinic
zone

« Satellite imagery shows developing asymmetry in clouds and
large decrease of deep convection on western side of TC

— Ends when cyclone is fully embedded in baroclinic
zone

 Satellite imagery shows baroclinic features and cyclone center
embedded in cold, descending air



Common Satellite Features During ET
Klein et al. (2000)

Inner core deep convection
Decrease in cloudiness in Convective asymmetry eroded — gap in eyewall
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Step 1 — Transformation
begins

NW Pacific ET Conceptual Model
Klein et al. (2000)

(a) Infrared Imagery

Cyclone moves over cooler
SSTs

Interaction begins with
mid-latitude baroclinic zone

Cold, dry advection begins
west of center

~~~~~

Convection decreases western
semicircle of outer circulation

Dry slot forms in southwest
guadrant

;i IR T
AR
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Warm, moist advection ' /i LA
maintains convection in (o) . 42 | M S k¥
northeast quadrant Klein et al. (2000)

: ) ) Weather and Forecasting
Cirrus shield develops in
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i‘\: NW Pacific ET Conceptual Model
b Klein et al. (2000)

« Step 2 — Transformation
begins

— Cyclone just south of baroclinic
zone

— Thermal advection increases
as cyclone circulation impinges
on baroclinic zone

— Cloud pattern asymmetry
Increases

— Dry slot increases in size

— Increasing vertical wind shear
begins to distort vertical
alignment of TC inner core at
upper levels

- Convectlon perSiStS in Inner Kleln et al (2000) Polar Jet Warm Core Shaded  seeee
core Weather and Forecasting STEP 2



"\‘\N NW Pacific ET Conceptual Model

.\

Prarege Klein et al. (2000)

« Step 3 — Transformation
complete

— Cyclone completely
embedded in baroclinic zone

b Possible warm
4 .fromogenesls

— Thermal advections continue
to intensify

------

— Cloud asymmetry grows

— Vertical shear advects upper-
level warm core downstream

— Weaker, lower-level warm
core persists over cyclone

Center 35N Eyewall
. 1 y érosi n.'( /'
— Inner core convection AN S
disrupted and eyewall erodes  Jsadozd 160 E

on south and west sides

Klein et al. (2000)
— Pronounced warm frontal Weather and Forecasting

cloud band and weaker cold
frontal cloud band visible



Closing

We have separate fundamental theories of lifecycle evolution of tropical cyclones
and extratropical cyclones

We do not have a concise theory on how one cyclone evolves from one textbook
type to the other: the sensitivity between utter destruction of the TC vs.
harmonious evolution from shear as a detriment to shear as a requirement is very
poorly understood

However, we have multiple tools that help forecasters analyze and time structural
evolution: CPS (4D gridded) and Klein Satellite-based (pseudo ET-Dvorak)

Regardless of ET Tool, timing this structural evolution is essential from a
practical impact and predictability question: wind field expansion, wind field
asymmetry, intensity change processes, rainfall asymmetry

We must always remember that while sometimes we treat intensity, track, and
structure as separate forecast metrics, they are intimately related —and ET often
highlights that relationship.



Quiz: Separate the 5 tropical cyclones from the 5 extratropical
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Separate the 5 tropical cyclones from the 5 extratroplcal
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NCDC
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