Forecasting During Eyewall Replacement Cycles

James Kossin

NOAA National Centers for Environmental Information Center for Weather and Climate

> University of Wisconsin Madison, WI

james.kossin@noaa.gov

RA-IV Workshop on Hurricane Forecasting and Warning National Hurricane Center, Miami, FL 29 April – 10 May, 2019

J. Kossin, NHC, May 2019

J. Kossin, NHC, May 2019

Observed intensity change versus SHIPS forecasts during ERCs

E-SHIPS Model

** D	SHIPS	INTENSITY	' FORE	ECAST	ADJUSTE) REL	ATIVE	Т0	ONSET	0F	ERC WI	EAKENING	PHASE	**		
	TIME	E (HR)	0	6	12	18	24		36	48	60	72	84	96	108	120
>24H	ir ago	(DSHIPS)	105	109	108	108	108		57	36	30	26	DIS	DIS	DIS	DIS
18H	IR AGO		105	104	103	103	103		52	31	25	21	DIS	DIS	DIS	DIS
12H	IR AGO		105	102	101	101	101		50	29	23	19	DIS	DIS	DIS	DIS
6H	IR AGO		105	99	96	95	95		44	23	17	DIS	DIS	DIS	DIS	DIS
	NOW		105	96	90	87	86		35	DIS	DIS	DIS	DIS	DIS	DIS	DIS
IN	i 6hr	-	105	109	100	94	91		68	47	41	37	DIS	DIS	DIS	DIS
IN	I 12HR		105	109	108	99	93		89	68	62	58	32	32	32	32

D-SHIPS: temporary "patch" for SHIPS while over land

E-SHIPS: temporary "patch" for SHIPS during ERCs

Intensity forecast error reduction

E-SHIPS provides objective quantitative guidance for adjusting intensity forecasts during an ERC

The PERC and M-PERC models provide guidance on when to apply E-SHIPS

PERC (Probability of ERC) Model

** PROBLT	Y OF AT	LEAST 1 SCND	RY EYEWL FORM	TN EVENT AL1	42018 MICHAEL	10/09/2018	18 UTC **
TIME(HR)	0-12	12-24(0-24)	24-36(0-36)	36-48(0-48)			
CLIMO(%)	27	28(47)	28(62)	0(62)	< PROB BASE	D ON INTENSI	TY ONLY
PROB(%)	22	6(27)	8(33)	0(33)	< FULL MODE	L PROB (RAN	NORMALLY)

	TABLE 2. SHIPS features applied to the Bayes probabilistic mo	del in the North Atlantic.
SHIPS feature	Description	Preference for secondary eyewall formation
VMX	Current intensity	Stronger
LAT	Latitude	Further south
D26C	Climatological depth of 26°C ocean isotherm	Deeper
U200	200-hPa zonal wind (200-800 km from center)	Weaker (near zero), very narrow range
RHHI	500–300-hPa relative humidity	Moister
TWAC	0-600-km average symmetric tangential wind at 850 hPa from NCEP analysis	Stronger
PENC	Azimuthally averaged surface pressure at outer edge of vortex	Lower
SHRD	850–200-hPa shear magnitude	Weaker, narrow range
VMPI	Maximum potential intensity	Higher, very narrow range
IR00-05	Standard deviation (from axisymmetry) of GOES infrared brightness temperature between 100 and 300 km	Smaller (more axisymmetric)
IR00–16	Average GOES infrared brightness temperature between 20 and 120 km	Colder, narrow range

M-PERC model

Use satellite microwave imagery to detect ERC onset

Microwave profiles

Isolate the leading patterns of microwave profile variability

M-PERC model predictors

Table 1. List of M-PERC predictors, as selected by a backward-stepping procedure. The PC-based predictors represent the microwave-based contribution to the model, and the Vmax-based predictors represent the intensity-based contributions.

Predictor	Description				
PC3	PC 3				
PC5	PC 5				
PC8	PC 8				
PC1-12	12 h change in PC 1				
PC2-06	6 h change in PC 2				
PC2-18	18 h change in PC 2				
PC3-06	6 h change in PC 3				
PC3-12	12 h change in PC 3				
PC3-18	18 h change in PC 3				
PC3-24	24 h change in PC 3				
PC4-18	18 h change in PC 4				
PC5-18	18 h change in PC 5				
PC7-24	24 h change in PC 7				
PC9-12	12 h change in PC 9				
PC9-24	24 h change in PC 9				
	-				
Vmax	Current intensity				
Vmax-12	12 h change in Vmax				
Vmax-18	18 h change in Vmax				

ERCs also affect the tropical cyclone wind-pressure relationship Strong storms: smaller pressure rise with larger wind decrease Weak storms: larger pressure fall with smaller wind increase

Summary (part 1)

There are models presently in place that can provide objective intensity forecast guidance during ERCs.

The models were initially developed for the Atlantic basin, but the M-PERC model has been performing well in all basins.

The M-PERC model is available in real-time for all basins:

http://tropic.ssec.wisc.edu/real-time/archerOnline/web/index_erc.shtml

Part 2: Climate Change Impact on Hurricanes

Multiple choice:

How confident are you that human activity has changed tropical cyclone behavior in any substantial way?

- 1) Almost certainly not
- 2) Probably not
- 3) About as likely as not
- 4) Probably has
- 5) Almost certainly has

Tropical cyclone hazard

Strongly modulated by climate Driven both **randomly** and **systematically** on range of time-scales

El Niño Climate change 20 to 100+ years

1 to 2 years What is El Niño doing this year? Decadal/Interdecadal 10 to 40 years What phase of the AMO or PDO?

To focus on climate change, we're usually looking for

past trends not easily explained by natural variability

and

projected trends in numerical models with GHG (e.g. CMIP-5)

Past trends

Frequency and **especially** intensity data are very inconsistent over time.

Are there other measures of tropical cyclone behavior that should be comparatively more consistent over longer time periods?

Two metrics considered here:

 The locations where tropical cyclones reach their peak intensity. Only need to know that a storm is at peak intensity, regardless of what the intensity actually is.

2) Their speed of translation.

Only need to know positions, which are averaged along track.

Global poleward expansion of peak intensity

The poleward migration rate is consistent with the independently-measured rate of tropical expansion, which has a human fingerprint on it.

Longer-term (>50 years) trends in the western North Pacific

Can this trend be explained by natural variability?

Western North Pacific natural variability:

El Niño (inter-annual) Pacific Decadal Oscillation (decadal)

Metric #2: Changes in tropical cyclone translation speed

Tropical cyclone translation speed

Local rainfall amounts are proportional to rain-rate and inversely proportional to translation speed.

Rain-rates increase by about 7% per °C of warming. A slowdown of as little as 7% would **double** the effect of a 1°C warming.

Examples of slow moving storms:

Hurricane Harvey (2017) in Texas USA Hurricane Florence (2018) in North Carolina USA Typhoon Nari (2001) in Taiwan Cyclone Idai (2019) in Mozambique

All of these storms caused extreme local rainfall amounts because of their slow translation speed.

Global change in TC translation speed

Global-average surface temperature has increased by about 0.5°C over this period.

The magnitude of the slowdown varies by region, but slowing is found in every basin except the Northern Indian Ocean.

Significant slowing is found **over land** in the Atlantic, western North Pacific, and Australia.

J. Kossin, NHC, May 2019

17% slowdown over CONUS over past 118 years

Closing Remarks

We seem to have reached the point of confidently detecting a human fingerprint on observed changes in tropical cyclone behavior, and these changes can have a substantial impact on risk.

Depending on the time horizon of interest, these climate change signals will play a role, possibly a large role, in future event probabilities and return periods.

Multiple choice:

How confident are you that human activity has changed tropical cyclone behavior in any substantial way?

- 1) Almost certainly not
- 2) Probably not
- 3) About as likely as not
- 4) Probably has
- 5) Almost certainly has

References

Eyewall replacement cycles

- Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. *Mon. Wea. Rev.*, **137**, 876-892.
- Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. *Mon. Wea. Rev.*, **139**, 3829-3847.
- Kossin, J. P., and M. Sitkowski, 2012: Predicting hurricane intensity and structure changes associated with eyewall replacement cycles. *Wea. Forecasting*, **27**, 484-488.
- Kossin, J. P., 2015: Hurricane wind-pressure relationship and eyewall replacement cycles. *Wea. Forecasting*, **30**, 177-181.
- Kossin, J. P., and M. DeMaria, 2016: Reducing operational hurricane intensity forecast errors during eyewall replacement cycles. *Wea. Forecasting*, **31**, 601-608.

Tropical cyclones and climate

- Kossin, J. P., T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a new global record of tropical cyclone intensity. *J. Climate*, **26**, 9960-9976.
- Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. *Nature*, **509**, 349-352.
- Kossin, J. P., K. A. Emanuel, and S. J. Camargo, 2016: Past and projected changes in western North Pacific tropical cyclone exposure. *J. Climate*, **29**, 5725-5739.
- Kossin, J. P., 2018a: A global slowdown of tropical cyclone translation speed. *Nature*, **558**, 104-108.
- Kossin, J. P., 2018b: Comment on "Spatial and temporal trends in the location of the lifetime maximum intensity of tropical cyclones". *Atmosphere*, **9**, 241-244.
- Kossin, J. P., 2019: Matters Arising. Nature, in press.

