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Observed intensity change versus SHIPS forecasts during ERCs
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E-SHIPS Model

*%* DSHIPS INTENSITY FORECAST ADJUSTED RELATIVE TO ONSET OF ERC WEAKENING PHASE **

TIME (HR) () 6 12 18 24 36 48 60 72 84 9% 108 120
>24HR AGO (DSHIPS) 105 109 108 108 108 57 36 30 26 DIS DIS DIS DIS
18HR AGO 105 104 103 103 103 52 31 25 21 DIS DIS DIS DIS
12HR AGO 105 102 101 101 101 50 29 23 19 DIS DIS DIS DIS
6HR AGO 105 99 96 95 95 44 23 17 DIS DIS DIS DIS DIS
NOW 105 96 90 87 86 35 DIS DIS DIS DIS DIS DIS DIS

IN 6HR 105 109 100 94 91 08 47 41 37 DIS DIS DIS DIS
IN 12HR 105 109 108 99 93 89 68 62 58 32 32 32 32

D-SHIPS: temporary “patch” for SHIPS while over land

E-SHIPS: temporary “patch” for SHIPS during ERCs
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Intensity forecast error reduction
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E-SHIPS provides objective quantitative guidance for
adjusting intensity forecasts during an ERC

The PERC and M-PERC models provide guidance on when to
apply E-SHIPS
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PERC (Probability of ERC) Model

** PROBLTY OF AT LEAST 1 SCNDRY EYEWL FORMTN EVENT AL142018 MICHAEL 10/@9/2018 18 UTC **
TIMECHR) 0-12 12-24(0-24) 24-36(0-36) 36-48(0-48)

CLIMOC%) 27 28( 47) 28( 62) 0C 62) <-- PROB BASED ON INTENSITY ONLY
PROB(%) 22 o( 27) 8C 33) @C 33) <-- FULL MODEL PROB (RAN NORMALLY)

TABLE 2. SHIPS features applied to the Bayes probabilistic model in the North Atlantic.

SHIPS feature Description Preference for secondary eyewall formation

VMX Current intensity Stronger
LAT Latitude Further south
26C Climatological depth of 26°C ocean isotherm Deeper
200 200-hPa zonal wind (200-800 km from center) Weaker (near zero), very narrow range
RHHI 500-300-hPa relative humidity Moister
TWAC 0-600-km average symmetric tangential wind Stronger
at 850 hPa from NCEP analysis
PENC Azimuthally averaged surface pressure at outer Lower
edge of vortex
SHRD 850-200-hPa shear magnitude Weaker, narrow range
VMPI Maximum potential intensity Higher, very narrow range
IR00-05 Standard deviation (from axisymmetry) of GOES infrared Smaller (more axisymmetric)
brightness temperature between 100 and 300 km
IR00-16 Average GOES infrared brightness temperature Colder, narrow range
between 20 and 120 km
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M-PERC model

Use satellite microwave imagery to detect ERC onset
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M-PERC model predictors

Table 1. List of M-PERC predictors, as selected by a backward-stepping procedure.
The PC-based predictors represent the microwave-based contribution to the model, and
the Vmax-based predictors represent the intensity-based contributions.

Predictor Description

PC3 PC3

PC5 PC5

PC8 PC8

PC1-12 12 h change in PC 1
PC2-06 6 h change mn PC 2
PC2-18 18 h change in PC 2
PC3-06 6 h change in PC 3
PC3-12 12 h change in PC 3
PC3-18 18 h change in PC 3
PC3-24 24 h change in PC 3
PC4-18 18 h change in PC 4
PC5-18 18 h change in PC 5
PC7-24 24 h change in PC 7
PC9-12 12 h change in PC 9
PC9-24 24 h change in PC 9

Vmax Current intensity
Vmax-12 12 h change in Vmax
Vmax-18 18 h change in Vmax
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ERCs also affect the tropical cyclone wind-pressure relationship

Strong storms: smaller pressure rise with larger wind decrease

Weak storms: larger pressure fall with smaller wind increase
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Summary (part 1)

There are models presently in place that can provide
objective Intensity forecast guidance during ERCs.

The models were Initially developed for the Atlantic
basin, but the M-PERC model has been performing
well in all basins.

The M-PERC model is available in real-time for all
basins:

http://tropic.ssec.wisc.edu/real-time/archerOnline/web/index_erc.shtml
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Part 2: Climate Change Impact on Hurricanes

Multiple choice:

How confident are you that human activity has changed
tropical cyclone behavior in any substantial way?

1) Almost certainly not
2) Probably not

3) About as likely as not
4) Probably has

5) Almost certainly has




Tropical cyclone hazard

Strongly modulated by climate
Driven both randomly and systematically on range of time-scales

El Nino 1 to 2 years What is El Nifo doing this year?
Decadal/Interdecadal 10 to 40 years What phase of the AMO or PDO?
Climate change 20 to 100+ years

To focus on climate change, we're usually looking for

past trends not easily explained by natural variability
and
projected trends in numerical models with GHG (e.g. CMIP-5)
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Are there other measures of tropical cyclone behavior that should
be comparatively more consistent over longer time periods?

Two metrics considered here:

1) The locations where tropical cyclones reach their peak intensity.
Only need to know that a storm is at peak intensity,
regardless of what the intensity actually is.

2) Their speed of translation.
Only need to know positions, which are averaged along track.
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Global poleward expansion of peak intensity

—Best-Track (99 + 59 km decade'1)
—— ADT-HURSAT (107 = 53 km decade™

ENSO Regression Residuals (km
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The poleward migration rate is consistent with the independently-measured rate
of tropical expansion, which has a human fingerprint on it.
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Longer-term (>50 years) trends in the western North Pacific

Observed (best-track) Projected (CMIP-5 / RCP8.5)
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Changes in regional hazard

Average latitude

of peak intensity
ngard i (e changes a little
latitudes decreases

Hazard at high latitudes
Increases substantially
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Metric #2:
Changes In tropical cyclone translation speed
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Tropical cyclone translation speed

Local rainfall amounts are proportional to rain-rate
and inversely proportional to translation speed.

Rain-rates increase by about 7% per °C of warming. A slowdown
of as little as 7% would double the effect of a 1°C warming.

Examples of slow moving storms:
Hurricane Harvey (2017) in Texas USA
Hurricane Florence (2018) in North Carolina USA

Typhoon Nari (2001) in Taiwan
Cyclone Idai (2019) in Mozambique

All of these storms caused extreme local rainfall
amounts because of their slow translation speed.
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Global change in TC translation speed

~ 6% slowdown

Global-average surface
temperature has increased
by about 0.5°C over this
period.
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The magnitude of the slowdown varies by region, but slowing
Is found in every basin except the Northern Indian Ocean.

Significant slowing is found over land in the Atlantic,
western North Pacific, and Australia.
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17% slowdown over CONUS over past 118 years
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Closing Remarks

We seem to have reached the point of confidently detecting a human fingerprint on
observed changes in tropical cyclone behavior, and these changes can have a
substantial impact on risk.

Depending on the time horizon of interest, these climate change signals will play a
role, possibly a large role, in future event probabilities and return periods.
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Multiple choice:

How confident are you that human activity has changed
tropical cyclone behavior in any substantial way?

1) Almost certainly not
2) Probably not

3) About as likely as not
4) Probably has

5) Almost certainly has
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