

2021 RA-IV WMO Workshop on Hurricane Forecasting and Warning

UW-CIMSS Products for TC Centering, Intensity and Structure

Derrick Herndon, Tony Wimmers, Tim Olander, Chris Velden

CIMSS -- Cooperative Institute for Meteorological Satellite Studies University of Wisconsin- Madison

James Kossin

NOAA National Centers for Environmental Information (NCEI)

Duty Station: Madison, Wisconsin

The Advanced Dvorak Technique Updates-Version 9.0

ARCHER-2 implemtation Subtropical classifications Extratropical transition Wind Radii estimation

AiDT

The Advanced (Al-enhanced) Dvorak Technique Improving the ADT using Machine Learning

Tim Olander, Tony Wimmers and Chris Velden

- Current <u>Deep Learning (DL) models</u> being developed focus on directly interrogating satellite imagery and deriving objective maximum sustained wind (MSW) speed estimates
- These DL models can be time consuming and computationally expensive to derive
 - Great care must be given to make sure the satellite data is homogeneous
- The Advanced Dvorak Technique (ADT) already objectively interrogates satellite imagery and stores many environmental and analysis parameters in storm history files
 - ADT accounts for satellite data and ocean basin differences through considerable research efforts developed over 20+ years of operational use
- Can a DL model using ADT history file parameters be derived to improve the performance of the algorithm, especially to aid in situations were the ADT can struggle?
 - Many different models could be investigated and would be computationally cheap to derive since we are only dealing with data values and not satellite imagery directly

AiDT Features (ADT history file parameters)								
Raw T#	Sin of Longitude	Cloud Symmetry						
Adjusted Raw T#	Cos of Longitude	Curved Band Value						
Final T#	Viewing Angle	Curved Band Amount						
CI#	Eye FFT	C/W Temperature Distance						
Eye Temperature	Cloud FFT	PMW Eye Score						
Cloud Temperature	Eye Scene ID value	Extratropical Flag						
C/W Temperature	Cloud Scene ID value	Subtropical Flag						
Latitude	Eye StdDev	Eye Size (2/eye size)						
	Shear Distance	CDO Size						
C/W : "Col	PMW: "Passive Microwave"							

- ADT history file parameters served as model "input" FEATURE DATA
 - ADT-Version 9.0 wind speed estimates for all global TCs from 2005-2018
 - 30-minute temporal resolution; ocean estimates only
 - IR Window image (~10.7µm) from satellite with lowest viewing angle
 - Analysis for all storms with Best Track intensity >= 30 knots
 - 26 different ADT history file parameters utilized
 - Cloud and eye temperatures, storm position, scene type, regression values, etc.
- Final Best Track are used as model "ground truth" LABEL DATA
 - NHC/JTWC maximum wind speed values are linearly interpolated to ADT analysis times
- Models derived using **combined global dataset** but applied to storms in different basins
 - Five ocean basins : North Atlantic, East/Central Pacific, Western North Pacific, North Indian Ocean, and South Pacific/Indian Ocean

- Data from 2005-2016 (minus three years) used as model TRAINING data set
 - Machine Learning model derived using this data set
- 2007, 2010, and 2014 data are used at model VALIDATION data set
 - Validation data is used to check model performance and help tune/optimize model
 - Years selected to provide a representation of all TC intensities in all five ocean basins
- 2017 and 2018 data are independent **TEST** data set
 - Data not utilized until model is fully derived and tuned with training and validation data
- Total number of ADT records used in each set (global values)
 - Training: 146,902 (64.4%)
 - Validation: 43,052 (18.9%)
 - Test: 38,008 (16.7%)

Advanced (Al-enhanced) Dvorak Technique (AiDT) Final AiDT Model

• Final Model

- Fully-connected Deep Neural Network (DNN)
- Regression-based loss function
- 26 input ADT History File Features
- One Hidden (Dense) layer with 32 neurons
- One Output layer neuron representing a single continuous wind speed estimate value
- A 3-hour time weighted averaging scheme is implemented to dampen out small fluctuations between consecutive intensity estimates
 - Time averaging reduces error by about 0.3kt

Advanced (AI-enhanced) Dvorak Technique (AiDT)

2017 Statistical Results

• 2017 Regression-base network Independent Test Data

SeTable below shows statistical comparisons using global-derived model maximum sustained wind estimates (MSW) for each specific basin and combined global "All Basins" set

- ADT Advanced Dvorak Technique Version 9.0
- AiDT-R AiDT (unaveraged)
- AiDT AiDT (3-hour time-weighted average)
- +/- Bias equals MSW over/underestimate versus BestTrack values (knots)

	Atlanti	с		East Pa	ncific		West Pacific			
Network	Bias	MAE	RMSE	Bias	MAE	RMSE	Bias	MAE	RMSE	
ADT	-0.91	9.50	12.33	-0.15	7.38	9.44	-1.87	8.47	10.88	
AiDT-R	0.49	6.89	8.76	-0.13	5.50	7.04	-0.60	6.02	7.56	
AiDT	0.33	6.59	8.44	-0.13	5.30	6.77	-0.86	5.89	7.35	
# records	5188	5188	5188	3677	3677	3677	5475	5475	5475	
			-		-	-				
	South I	Pacific	-	North 1	ndian		All Basins			
Network	Bias	MAE	RMSE	Bias	MAE	RMSE	Bias	MAE	RMSE	
ADT	2.71	8.43	10.70	5.03	7.51	9.96	-0.13	8.50	10.98	
AiDT-R	0.80	6.52	8.29	1.50	5.90	8.15	-0.18	6.26	7.98	
AiDT	-0.98	6.27	7.99	1.04	5.33	7.49	-0.35	6.03	7.70	
# records	3766	3766	3766	566	566	566	18672	18672	18672	

Advanced (Al-enhanced) Dvorak Technique (AiDT) 2017 Storm Examples

• 2017 North Atlantic

- o9L (Harvey)
- 12L (Jose)
- 15L (Maria)
- 17L (Ophelia)
- Note impact of AiDT during formation and dissipation stages
- BLUE ADT
- RED AiDT
- BLACK NHC

Advanced (Al-enhanced) Dvorak Technique (AiDT) 2017 Storm Examples

- 2017 East Pacific
 - o4E (Dora)
 - o6E (Fernanda)
 - 07E (Greg)
 - 13E (Kenneth)
 - Note: ADT used in derivation of NHC Best Track. Also note impact of AiDT in various stages
 - BLUE ADT
 - RED AiDT
 - BLACK NHC

Advanced (Al-enhanced) Dvorak Technique (AiDT) 2017 Storm Examples

• 2017 Northwest Pacific

- o7W (Noru)
- 17W (Sanvu)
- 20W (Talim)
- 25W (Lan)
- AiDT helps alleviate some of the TC periods where the ADT has historically struggled
- BLUE ADT
- RED AiDT
- BLACK JTWC

ADT Scene Type Analysis

• AiDT impacts on ADT performance by Scene Type

- 2017 Independent data set
- Using AiDT Regression-based global model
- AiDT reduces error most for ADT estimates using **Curved Band and Shear** scene types as well as also significantly reducing biases, especially for Shear estimates
- Curved Band and Shear scenes are least studied scene types in ADT algorithm
- +/- Bias equals MSW over/underestimate versus Best Track values (knots)

		A	DT		AiDT				
ADT	Sample								
Scene Type	Size	Bias	MAE	RMSE	Bias	MAE	RMSE		
Eye	2590	0.10	8.66	11.03	-1.43	6.55	8.30		
CDO	7246	2.20	8.92	11.18	-0.67	6.53	8.30		
Curved Band	5670	-1.50	8.54	11.17	0.57	5.75	7.27		
Shear	3166	-3.21	7.36	10.12	-0.41	4.95	6.35		

Advanced (Al-enhanced) Dvorak Technique (AiDT) TC intensity Analysis

• AiDT impacts on TC intensity categories

- 2017 Independent data set
- Using AiDT Regression-based global model
- Largest AiDT impact on TS and H1 categories (typically Curved Band and Shear scene types, along with CDO)
- +/- Bias equals MSW over/underestimate versus Best Track values (knots)

		ADT AiD'				AiDT	
Saffir-Simpson	Sample						
Intensity Category	Size	Bias	MAE	RMSE	Bias	MAE	RMSE
TD <35.0 kt	3519	5.34	6.58	9.27	5.96	6.28	7.83
TS 35.0-63.9kt	9016	-0.37	8.54	10.72	-1.19	5.30	6.79
H1 64.0-82.9kt	3001	-3.99	9.90	12.87	-2.09	6.45	8.15
H2 83.0-95.9kt	1445	-2.03	10.02	12.43	-3.50	8.01	9.92
H3 96.0-112.9kt	845	2.44	8.35	10.22	-0.44	6.21	7.86
H4 113.0-136.9kt	607	-4.18	7.83	10.15	-4.14	6.35	8.24
H5 >137.0kt	239	-10.34	10.84	13.44	-10.02	11.00	12.82
H1-H2 64.0-95.9kt	4446	-3.35	9.94	12.73	-2.55	6.96	8.77
H3-H5 >96.0kt	1691	-2.95	8.52	10.71	-3.41	6.94	8.88

- Comparison of AiDT with various TC intensity estimation models/algorithms
 - AiDT is on-par or superior to many more complex and time-consuming DL methods or historical objective techniques currently utilized in TC operations

Technique	Technique Method Data Type Inputs			Region	Dataset Years	MSW RMSE (kt)	
Dvorak	Empirical	Geo	IR, VIS	Global	1970s-80s	10-15	
(Dvorak, 1975, 1984)							
DAV-T	Statistical	Geo	IR (10.7um)	North East/West	2007-2011	12.9-13.4	
(Ritchie, et al., 2014)				Pacific			
SATCON	Statistical	Geo	IR (10.7um)	Global	2006-2014	9.0	
(Velden and Herndon, 2020)	Ensemble	Leo	PMW (various, based on				
			method)				
ADT	Statistical	Geo	IR (10.7um)	Global	2017	10.98	
(Olander and Velden, 2019)	Empirical	Leo	PMW (eye score)				
DeepMicroNet	2D-CNN	Leo	PMW (37GHz,	Global	2007, 2012	9.6-14.3	
(Wimmers et al., 2019)			85-92GHz)				
CNN-TC	2D-CNN	Geo	IR (10.7um)	Global	2017	8.39	
(Chen et al,, 2019)		Leo	WV (6.7um)				
			PMW (Rain Rate)				
Pradhan model	2D-CNN	Geo	IR	Global	1999-2014	10.18	
(Pradhan et al., 2018)							
2D3	2D-CNN	Geo	IR1 (10.7um)	NorthWest Pacific	2011-2016, 2017	8.32	
(Lee et al., 2019)			IR2 (12.0um)				
			WV (6.7um)				
			SWIR (3.9um)				
AiDT	1D-DNN	Geo	IR (10.7um)	Global	2017, 2018	7.70-8.23	
		Leo	PMW (eye score)				

- The AiDT improves ADT estimates overall, especially in certain TC stages where the ADT has historically struggled or not been fully investigated
- An AiDT article has been submitted to the AMS journal *Weather and Forecasting* and is currently undergoing peer review
- We are running the AiDT experimentally at UW-CIMSS in parallel with our real-time ADT processing
 - The AiDT analysis will be made public once the article has been accepted and published, hopefully in the second half of 2021
- Integration of the AiDT estimates within the UW-CIMSS SATellite CONsensus (SATCON) algorithm is planned

SATCON: Motivation

- Estimation of Tropical Cyclone current intensity is the first step in the TC intensity forecast.
- Current intensity information is used in several statistical and diagnostic intensity models: SHIPS, SHIPS-RI, PERC, M-PERC, RIPA, AHI
- TC parameters which include current intensity are used to initialize the TC vortex in dynamic models

SATCON: A Multi-Spectral Approach

- In order to account for storms with different structures an "all the above" approach is needed.
- Multiple satellite scanning strategies (Geo/LEO)
- Multiple channels to measure the various TC features that are related to intensity. (IR, imager channels, temp/moisture sounders)

ADT

Geostationary

- Intensity
- Position
- Structure

ARCHER

MW Imager

- Position
- Structure
- ~Intensity

CIMSS AMSU, SSMIS and CIMSS/CIRA ATMS

MW Sounder (esp. ATMS)

- Intensity
- Structure

SATCON Quick Look Page

- Current and past intensity
- Short current IR animation
- Recent MIMIC-TC microwave

http://tropic.ssec.wisc.edu/real-time/satcon/PG/satcon_pg.html

SATCON Performance

Comparison with SATCON members and Dvorak. Independent verification MSW 2015-2019 using aircraft-aided best track

N =400	SATCON	ADT	SSMIS/ ATMS	Simple Average	Comparison to Dvorak
Bias (knots)	-0.9	-3.0	-0.7	-1.8	SATCON, Dvorak and ADT Peformance by Binned Intensity
Abs Error (kt)	7.5	10.1	10.0	9.1	ack (kts) ack
RMSE (kt)	9.5	12.9	12.3	11.2	
N =568	SATCON	ADT	AMSU	Simple Average	Image: Second
N =568 Bias (knots)	SATCON	ADT -3.2	AMSU -4.2	Simple Average -3.7	Image: Second state sta
N =568 Bias (knots) Abs Error (kt)	SATCON -1.5 7.6	ADT -3.2 9.5	AMSU -4.2 10.8	Simple Average -3.7 8.6	$\begin{array}{c c} \overrightarrow{H} & -10 \\ \overrightarrow{H} & -10 \\ \overrightarrow{H} & -20 \\ \hline & -30 \end{array}$

JS

Dvorak (average of available agencies) RMS<u>E ~ 10.9 knots</u>

SATCON Impacts on Forecast

- Test SHIPS performance using SATCON intensity inputs. Replace "best track" with SATCON current and previous 12 hour Vmax values (2019 Atlantic storms)
- Repeat using Dvorak (average of two centers)
- RI/RW forecast errors are historically double that of non-RI/RW storms. Potential for modest improvements to intensity forecasts

SATCON: Next steps

- SATCON currently "delivered" to JTWC via ATCF fixes. Fixes are performed when new microwave sounder estimates are available. However the living nature of SATCON means it is always updating with new information. Replace one-time data push with continual ATCF updates (hourly)
- Adapt the algorithm to work with the GeoIPS system. IDL dependencies replaced with Python. Continue integration work including Direct Broadcast production
- SMAP integration including eye size corrections
- DeepMicroNet, AiDT and DAV potential members
- Explore real-time import of SAR fixes
- Explore adding an ATMS 89 GHz –based intensity estimate derived from deep learning (*Time permitting*).
- SATCON uses ARCHER structure inputs. Addition of ATMS?AMSU ARCHER production will fill gaps from current MI

Adapting ARCHER to JPSS: ATMS 89 GHz (H)

Adapting ARCHER to JPSS: ATMS 183 GHz (H)

Adapting ARCHER to JPSS: VIISR (Visible channel)

Adapting ARCHER to JPSS: VIISR (Day/Night Band)

TC Intensification

Environmental Controls

Internal Controls

SSTs, wind shear, moisture Impact long range and short range forecast Eye formation, convective bands eyewall replacement cycles. Primarily impact short range intensity changes

"The disparity between SHIPS forecasts and the observed intensity changes during ERCs is strongly suggestive that the typical environmental controls of intensity change, on which SHIPS is largely based, are temporarily **countermanded** while dynamic processes internal to the storm dominate the intensity evolution."- Kossin

ERC forecast tools available to forecasters currently

E-SHIPS – ERC adjustments to SHIPS forecast when ERC onset is known

- Our work with M-PERC is helping to inform meaningful updates to E-SHIPS

PERC – Probability of ERC (based on environment, Vmax and infrared satellite information)

** PH TIME CLIMO PROB	ROBLTY (HR) D(%) (%)	OF AT 0-12 48 47	LEAST 12-24(43(51(1 SCNI (0-24) 70) 74)	24-36 28(92(VL FOR (0-36) 79) 98)	MTN EV 36-4 23 97	VENT ALI 18(0-48) 3(84) 7(100)	142016) <- PC	MATTH - PROB 4 UNAV	EW SASED	ON IN MODEL	2016 TENSIT SKILL	00 UTC Y ONLY DEGRAD	** ED
** DS	SHIPS	INTENSI	TY FOR	RECAST	ADJUSTI	ED REL	ATIVE	TO ONSE	ET OF	ERC WE	AKENIN	G PHAS	E **		
	TIME	(HR)	0	6	12	18	24	36	48	60	72	84	96	108	120
>24HI	R AGO	(DSHIPS	3) 135	136	128	117	108	101	102	107	104	67	71	69	72
18HI	R AGO		135	134	126	115	106	99	100	105	102	65	69	67	70
12H	R AGO		135	132	131	120	111	104	105	110	107	70	74	72	75
6 H I	R AGO		135	129	126	125	116	109	110	115	112	75	79	77	80
	NOW		135	126	120	117	116	109	110	115	112	75	79	77	80
IN	6HR		135	136	127	121	118	115	116	121	118	81	85	83	86
IN	12HR		135	136	128	119	113	109	110	115	112	75	79	77	80

DECEMBER 2011

Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. *Mon. Wea. Rev.*, **139**, 3829-2847

9/13

9/14

9/15

9/16

89 GHz ring scores can be displayed in 9/12 hovemuller form to show time and space

*ARCHER ring score plotted versus time shows a branching/merging pattern during ERCs

Best Track Intensity

Web page output for M-PERC On CIMSS ARCHER page

Training Data 1999-2011 -> 41 storms with 84 ERC events (1787 profiles)

Completed Work to Date

- Developed baseline validation of Atlantic data
- Baseline validation of Eastern Pacific cases
- Updated web products
 - Incorporate lessons learned to update product description page
 <u>Created</u> archive page for direct links
- Held virtual product training for JTWC in 2020
- Established training dataset for EPac model
- Started porting work. Move graphics production away from MATLAB to Python

The Deep Learning intensity model: 'DeepMicroNet'

• Takes 37 and 89 GHz imagery as input, produces *probabilistic* output of TC intensity

Model statistics

RMSE = 14.6 kt

RMSE = 10.6 kt