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WISCONSIN

The AdvancedDvorak Technique Updates Version 9.0

ARCHER2 implemtation
Subtropical classifications
Extratropicaltransition
Wind Radii estimation
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CIMSS WISCONSIN

AIDT
The Advanced (Alenhanced) Dvorak Technique

Improving the ADT using Machine Learning
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CIMSS verview

A Current being developed focus on directly interrogating satellite
imagery and deriving objective maximum sustained wind (MSW) speed estimates

A These DL models can be time consuming and computationally expensive to derive
A Great care must be given to make sure the satellite data is homogeneous

A The already objectively interrogates satellite imagery and
stores many environmental and analysis parameters in storm history files
A ADT accounts for satellite data and ocean basin differences through considerable resea
efforts developed over 20+ years of operational use

A Can a DL model using ADT history file parameters be derived to improve the performance c
the algorithm, especially to aid in situations were the ADT can struggle?
A Many different models could be investigated and would be computationally cheap to der
since we are only dealing with data values and not satellite imagery directly
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CIMSS AIDT Feature Values

AIDT Features(ADT history file parameters)

Raw T# Sin of Longitude Cloud Symmetry
Adjusted Raw T# Cos of Longitude Curved Band Value
Final T# Viewing Angle Curved Band Amount
Cl# Eye FFT C/W Temperature Distance

Eye Temperature Cloud FFT PMW Eye Score

Cloud Temperature Eye Scene ID value Extratropical Flag

C/W Temperature Cloud Scene ID value Subtropical Flag
Latitude EyeStdDev Eye Size (2/eye size)

Shear Distance CDO Size
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CIMSS ata Description

Al $4 EEOOI OU Z£EI A DPAOAI AOGAOO OAOOAA AO 111
wind speed estimates for all global TCs fram
A 30-minute temporal resolution; ocean estimates only
A IR Window image (~10.7um) from satellite with lowest viewing angle
A Analysis for all storms with Best Track intensity >= 30 knots
A 26 different ADT history file parameters utilized
A Cloud and eye temperatures, storm position, scene type, regression values, etc.

A&ET Al "AOO 40AAE AOA OOAA AO 11 AAI o&6coOi Ol
A NHC/JTWC maximum wind speeslalues are linearly interpolated to ADT analysis times
A Models derived using but applied to storms in different basins

: North Atlantic, East/Central Pacific, Western North Pacific, North India
Ocean, and South Pacific/Indian Ocean



CIMSS Data Description
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A Data from 20052016 (minus three years) used as modél data set
A Machine Learning model derived using this data set

A 2007, 2010, and 2014 data are used at modét data set
A Validation data is used to check model performance and help tune/optimize model
A Years selected to provide a representation of all TC intensities in all five ocean basi

A 2017 and 2018 data are independert data set
A Data not utilized until model is fully derived and tuned with training and validation d

A Total number of ADT records used in each séjlobal values)
146,902 (64.4%)
43,052 (18.9%)
38,008 (16.7%)
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CIMSS Final AIDT Model

Trainable Parameters
L1: 26 X 32 + 32 = 864
L2:32X1+1=33

A 26 input ADT History File Features Hidden layer

A One Hidden (Dense) layer with 32 neurons 32 neurons

A One Output layer neuron representing a single
continuous wind speed estimate value

A Fully-connected Deep Neural Network (DNN)

A A is
implemented to dampen out small fluctuations| |yt Features
between consecutive intensity estimates n=26

A Time averaging reduces error by about 0.3kt
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2017 Statistical Results

CIMSS

A Table below shows statistical comparisons using gletedived model maximum sustained wind estimat
i -37q &£ O AAAE OPAAEAZEA AAOET AT A AT 1T AET AA CI

A ADT ZAdvanced Dvorak Technique Version 9.0

A ADT-R Z AIDT (unaveraged)

A AIDT ZAIDT (3hour time-weighted average)

A +/-Bias equals MSW over/underestimate versus Best Track values (knots)

| |Aflantic  |EastPacific _ [WestPacific |
|ADT-R__ 049 [6.89 [876 |-0.13 |5.50 [7.04 [-0.60 [6.02 |7.56 |
0000000000000

| |SouthPacific  |Northindian _ [AllBasins |
ADT __ |2.71 [8.43 [10.70 |5.03 |7.51 [9.96 [-0.13 |8.50 |10.98 |
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CIMSS 2017 Storm Examples

Atl 2017 -- Storm 9 (Harvey) = Atl 2017 -- Storm 12 (Jose)

A 2017 North Atlantic | =5 =

— BestTrack — BestTrack

A 09L (Harvey) |
A 12L (Jose) ™|
A 15L (Maria) f
A 17L (Ophelia) | Ay
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A Note impact of AiDT B o F A FEF L L EFEA
H - Atl 2017 -- Storm 15 (Maria) Atl 2017 -- Storm 17 (Ophelia)
during formation and
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MSW (knot:

A BLUEZ ADT
A REDz AIDT | B
A BLACKz NHC




A 2017 East Pacific
A 04E (Dora)

A 06E (Fernanda)
A O7E (Greg)

A 13E (Kenneth)

A Note: ADT used in
derivation of NHC Best
Track. Also note impact
of AIDT in various stages

A BLUEZ ADT
A REDz AIDT
A BLACKz NHC

MSW (knots)

MSW (knot:

2017 Storm Examples

EPac 2017 -- Storm 4 (Dora)

— ADT
m— AIDT

— BestTrack
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EPac 2017 -- Storm 7 (Greg)

— ADT
w— AIDT

140 1
— BestTrack
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EPac 2017 -- Storm 6 (Fernanda)

- ADT
— ADT
— BestTrack

MSW (knots)
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EPac 2017 -- Storm 13 (Kenneth)

— ADT
— ADT
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— BestTrack
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2017 Storm Examples

WPac 2017 -- Storm 7 (Noru) WPac 2017 -- Storm 17 (Sanvu)

A 2017 Northwest Pacific A :2%1 | =
A 07W (Noru)

A 17W Ganwy) j
A 20W {ralim) | w
A 25W (an) | ﬁfM ftw

= BestTrack = BestTrack

MSW (knots)
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A AIDT helps alleviate somdl - T 2 B N
Of the TC periOdS Where WPac 2017 -- Storm 20 (Talim) WPac 2017 -- Storm 25 (Lan)

= ADT
= ADT

the ADT has historically : — et
struggled

MSW (knots)
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A BLUEZ ADT
A REDz AIDT
A BLACKz JTWC
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g M iii\ ADT Scene Type Analysis \&L}
CIMSS yp y

A 2017 Independent data set
A Using AiDT Regressiebased global model

A AIDT reduces error most for ADT estimates using scene

types as well as also significantly reducing biases, especially for Shear estimates
A Curved Band and Shear scenes are least studied scene types in ADT algorithm
A +/- Bias equals MSW over/underestimate versus Best Track values (knots)

ADT Sample
Scene Type Size |[Bias |MAE |RMSE [Bias MAE |RMSE
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“‘ TC intensity Analysis
CIMSS

) T2 e T Tl e s
Intensity Categor Size |[Bias |MAE |RMSE|Bias |MAE |RMSE

A 2017 Independent data set

A Using AIDT Regressiebased ------
global model TS35.063.9kt 9016 -0.37 |8.54 [10.72 |-1.19 |[5.30 |[6.79
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scene types, along with CD (i YSRARR PRl DR Pl PR Ve FYell (P

over/underestimate versus M

Best Track values (knots)
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%IMSS\ Method Comparisons

A AIDT is onpar or superior to many more complex and timeconsuming DL methods or
historical objective techniques currently utilized in TC operations

Method Dataset Years |MSW RMSE (kt

Dvorak, 1975, 1984

Ritchie, et al., 2014 Pacific

SATCON Statistical Geo IR (10.7um) Global 20062014
method

Olander andvelden 2019) [Empirical  |Leo PMW (eye score)

Wimmerset al., 2019 85-92GHz)

CNN-TC 2D-CNN Geo IR (10.7um) Global 2017 8.39

PMW (Rain Rate
Pradhan model 2D-CNN Global 19992014 10.18
e R i N i i s

2D3 2D-CNN IR1 (10.7um) NorthWest Pacific |2011:2016, 2017
(Lee et al., 2019) IR2 (12 Oum)

1D-DNN IR (10. 7um) Global 2017, 2018 7.708.23
Leo PMW (eye score

W
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CIMSS Conclusions

A The AIDT improves ADT estimates overall, especially in certain TC stages
where the ADT has historically struggled or not been fully investigated

A We are running the AiDT experimentally at UWCIMSS in parallel with our
real-time ADT processing
A The AIDT analysis will be made public once the article has been accepted
published, hopefully in the second half of 2021

A Integration of the AiDT estimates within the UW-CIMSSSATellite
CONsensugSATCON) algorithm is planned



SATCON: Motivation

A Estimation of TrOpiCa| CyC|One NHC Official In?ensit){ Error Trend
current intensity is the first step 0 Atiantle Bas
. . . —e— 24 h
in the TC intensity forecast. —— i,
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A Current intensity information is
used in several statistical and
diagnostic intensity models:
SHIPS, SHIPS-RI, PERC,
M-PERC, RIPA, AHI
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A TC parameters which include
Current |ntenS|ty are used ‘to 1099019921994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
Year
initialize the TC vortex in
dynamic models




SATCON: AMulti-Spectral Approach

Aln order t o account for storms with different

Ve

A Multiple satellite scanning strategies (Geo/LEO)

A Multiple channels to measure the various TC features that are related to intensity. (IR,

imager channels, temp/moisture sounders)
CIMSS AMSU, SSMIS and
ADT ARCHER CIMSS/CIRAATMS

Mlmaer MW Sounder

Geostationry
A Intensity A Position (esp. ATMS)
A Position A Structure A Intensity

A Structure A ~Intensity A Structure



SATCON Quick Look Page

- Current and past intensity
- Short current IR animation
-  Recent MIMIC-TC microwave




