
2021 WMO RA-IV Workshop Advisory Preparation Exercise

Outline

Setting the Stage (00:00-00:45)

- Plotting Fixes
- Determining Initial Location, Intensity, and Size
- Send and receive model guidance

Creating the Forecast (00:45-02:00)

- Track
- Intensity
- Wind Radii

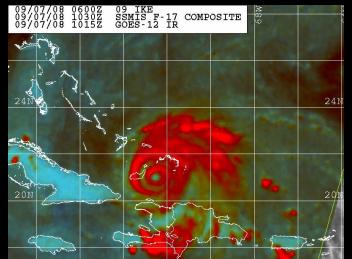
Outline

Forecast Coordination (02:00-02:15)

- Coordinate U.S. and International Watches/Warnings
- Coordinate rainfall and other TC hazards

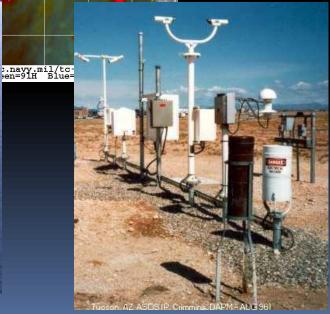
Product Preparation (02:15-03:00)

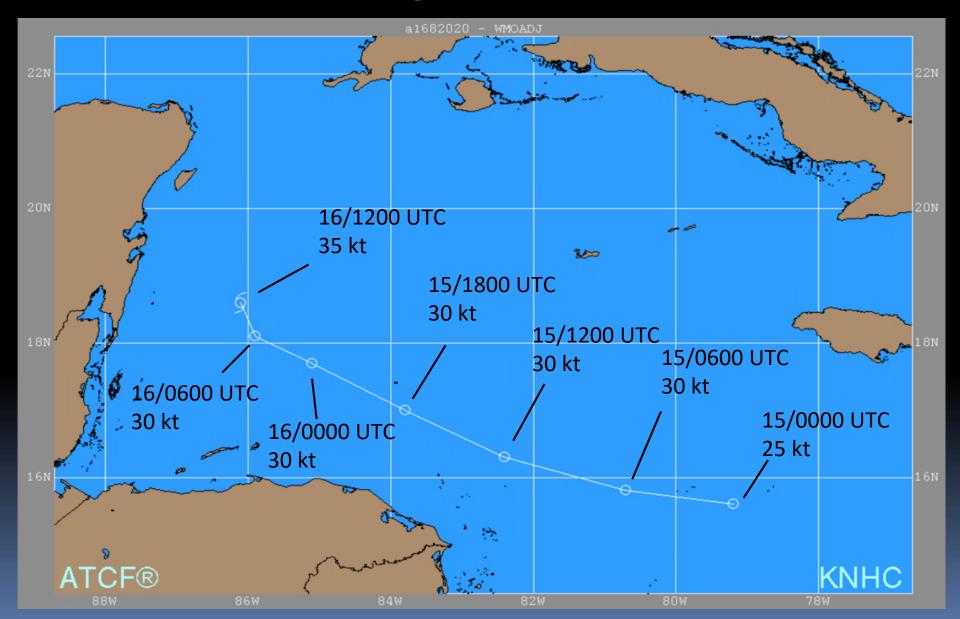
- Public Advisory
- Discussion


NHC Forecast Cycle

Time (HR : MIN)	Event
00:00	Issue Tropical Weather Outlook Issue Intermediate Public Advisory (if necessary) Synoptic time / cycle begins
00:45	Receive satellite fix data
01:00	Initialize models
01:10	Receive model guidance and <i>prepare</i> forecast
02:00	NWS / DOD hotline coordination
03:00	Advisory deadline
03:15	FEMA conference call

18:00 UTC Synoptic time / cycle begins

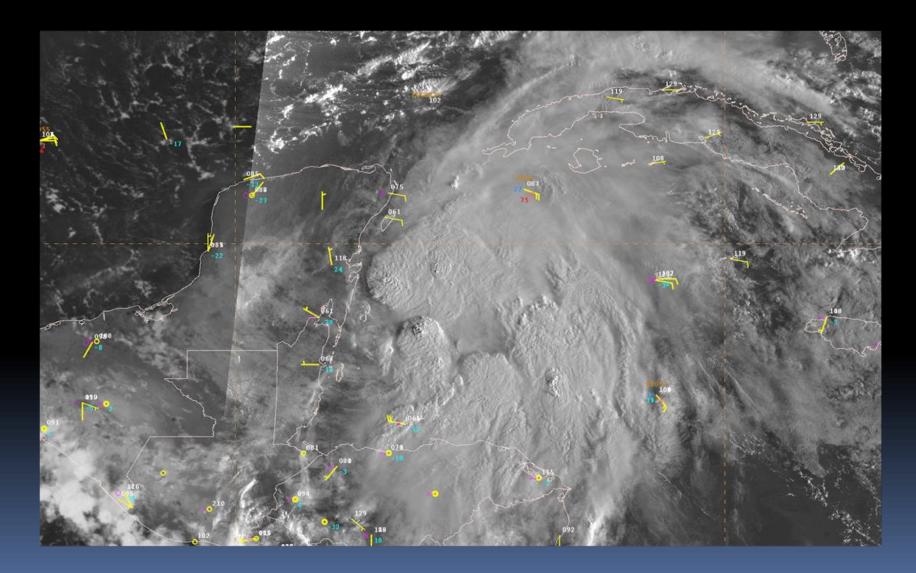

Hurricane specialist analyzes available observations



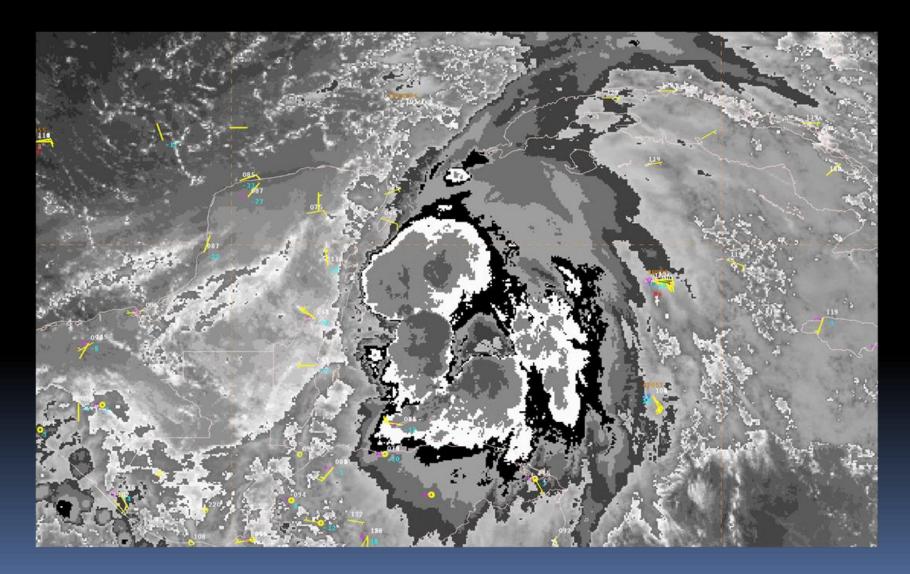
Working Best Track in ATCF through 1200 UTC

Reconnaissance Aircraft (Air Force) Scheduled between 1800-0000 UTC

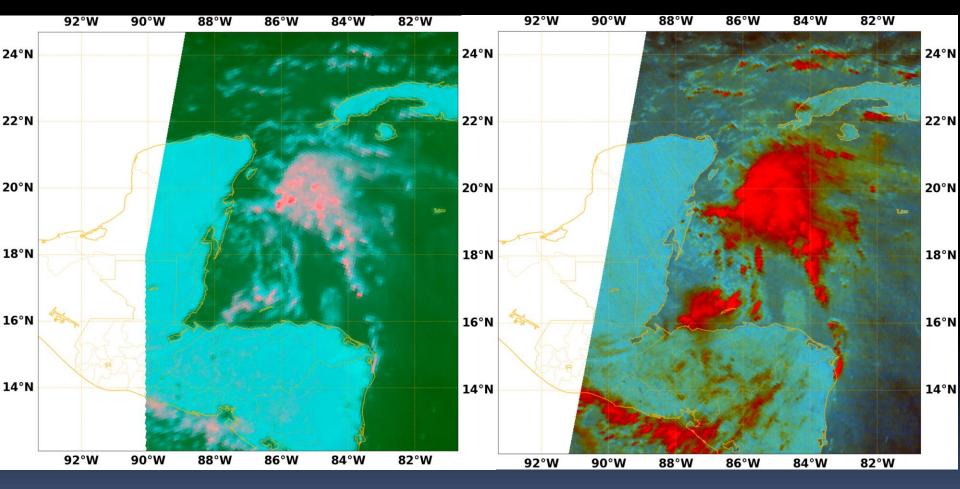
000


NOUS42 KNHC 061930 REPRPD WEATHER RECONNAISSANCE FLIGHTS CARCAH, NATIONAL HURRICANE CENTER, MIAMI, FL. 0330 PM EDT WED 15 APRIL 2020 SUBJECT: TROPICAL CYCLONE PLAN OF THE DAY (TCPOD) VALID 16/1100Z TO 17/1100Z APRIL 2020 TCPOD NUMBER.....20-001 I. ATLANTIC REQUIREMENTS 1. SUSPECT AREA (WESTERN CARIBBEAN SEA) FLIGHT ONE -- TEAL 71 🔸 FLIGHT TWO -- TEAL 72 A. 16/1800Z A. 17/0530Z B. AFXXX 01DDA INVEST B. AFXXX 0214A CYCLONE C. 16/1500Z C. 17/0245Z D. NA D. 20.9N 86.7W E. 16/1730Z TO 16/2100Z E. 17/0500Z TO 17/0830Z F. SFC TO 10,000 FT F. SFC TO 10,000 FT FLIGHT THREE -- TEAL 73 A. 17/1130Z,1730Z B. AFXXX 0314A CYCLONE C. 17/0900Z D. 21.6N 86.7W E. 17/1100Z TO 17/1730Z F. SFC TO 10,000 FT 2. OUTLOOK FOR SUCCEEDING DAY: A. CONTINUE 6-HRLY FIXES IF SYSTEM DEVELOPS. B. BEGIN 12-HRLY P-3 TAIL DOPPLER RADAR MISSIONS, WITH FIRST MISSION DEPARTING KLAL AT 17/2000Z. C. A G-IV SYNOPTIC SURVEILLANCE MISSION FOR 19/00Z DEPARTING KLAL AT 18/1730Z. **II. PACIFIC REQUIREMENTS** 1. NEGATIVE RECONNAISSANCE REQUIREMENTS. 2. OUTLOOK FOR SUCCEEDING DAY....NEGATIVE. \$\$ MCW

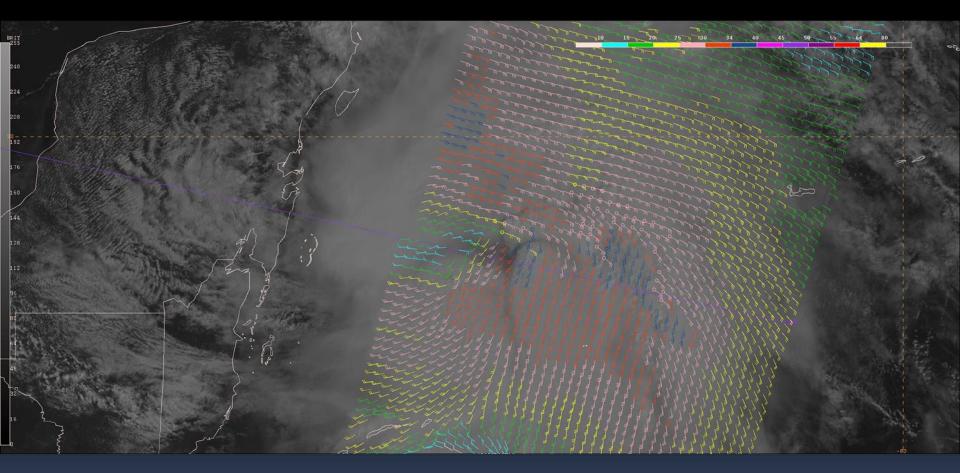
First flight into tropical storm. Mission was originally planned as an "Invest" mission, arriving at 18Z

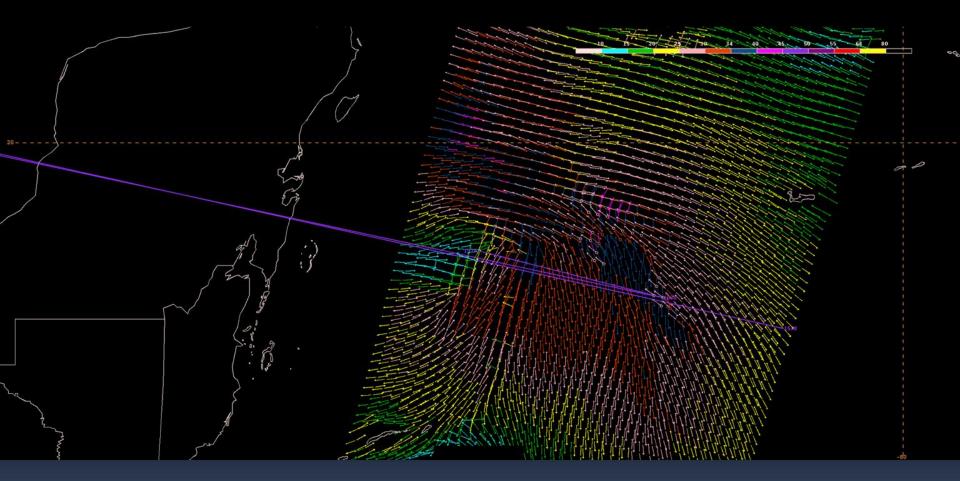

G-IV flight planned for 0000 UTC following day

NNNN

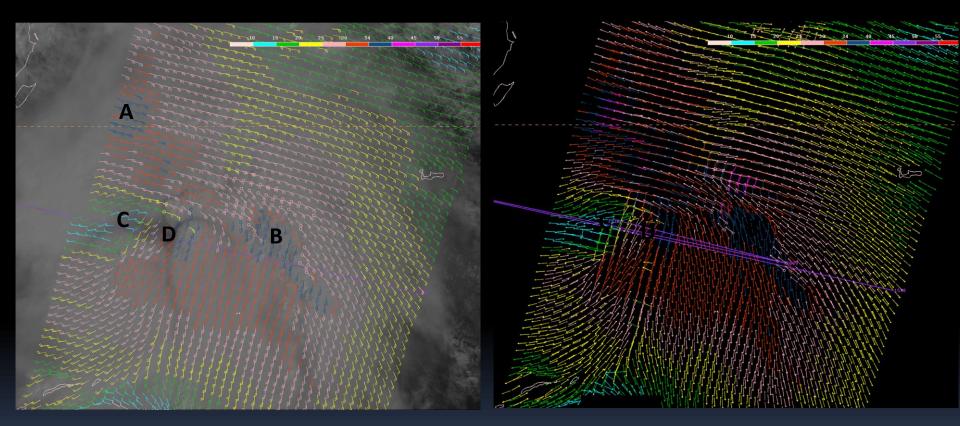

Visible Imagery

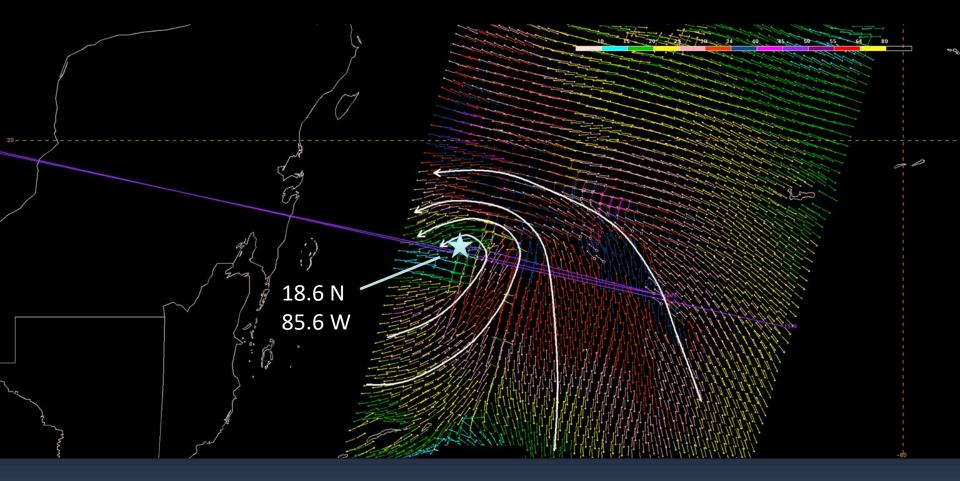
IR Imagery

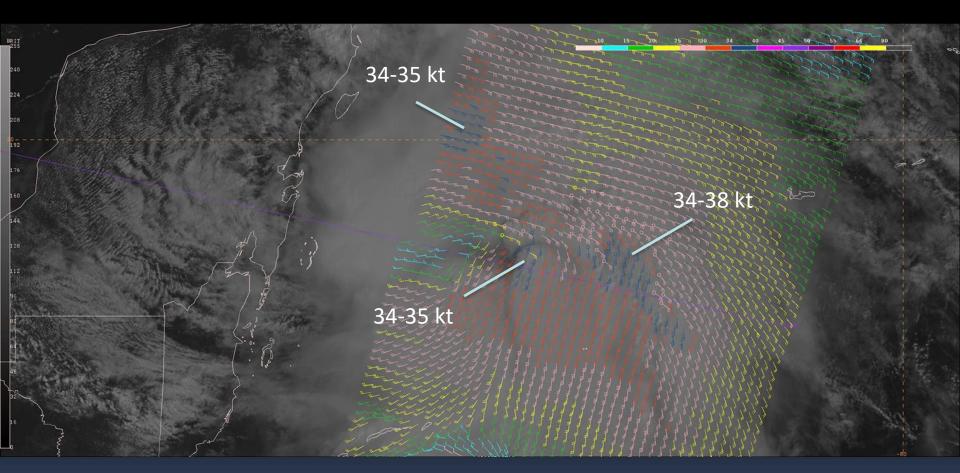

Overnight Microwave Imagery AMSR- 16/0650 UTC


37 GHz Color Composite

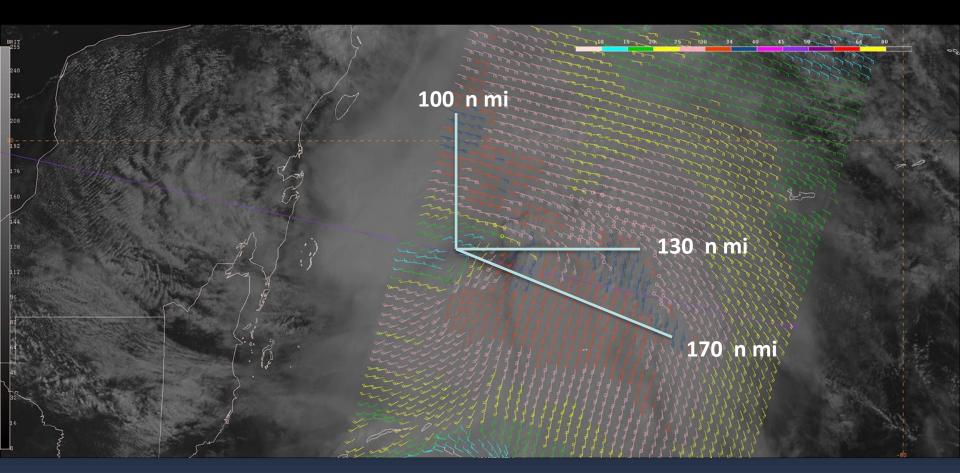
89 GHz Color Composite


ASCAT-B 1514 UTC Model solution

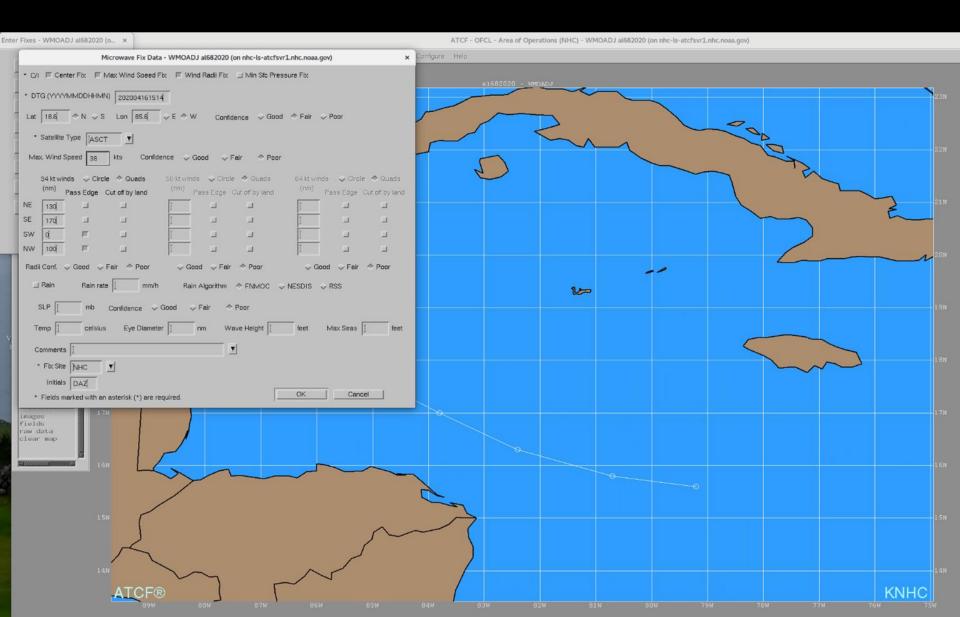

ASCAT-B 1514 UTC Ambiguities


ASCAT-B 1514 UTC Identify the center of the Tropical Storm

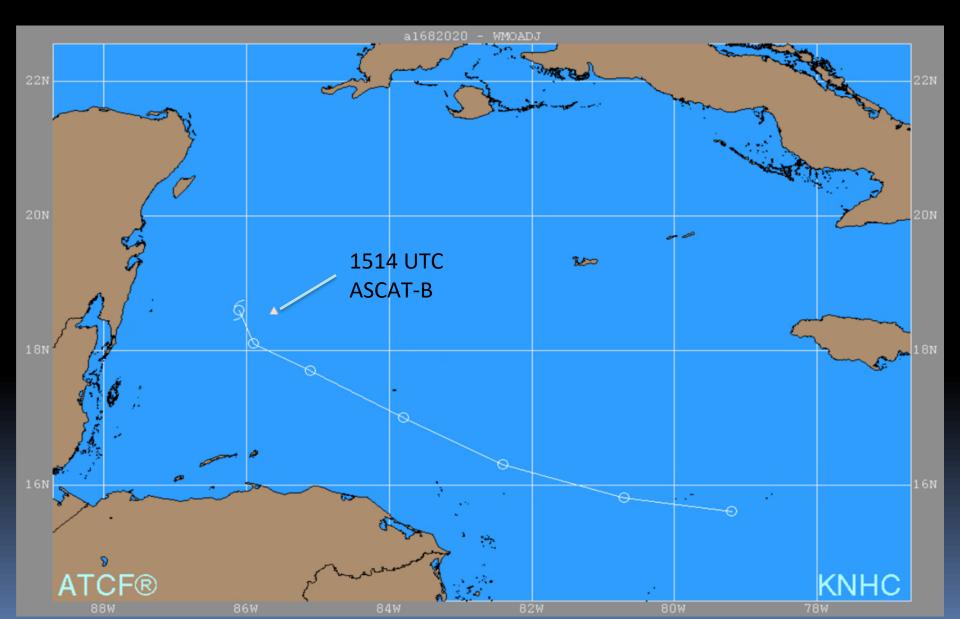
ASCAT-B 1514 UTC



ASCAT-B 1514 UTC Intensity

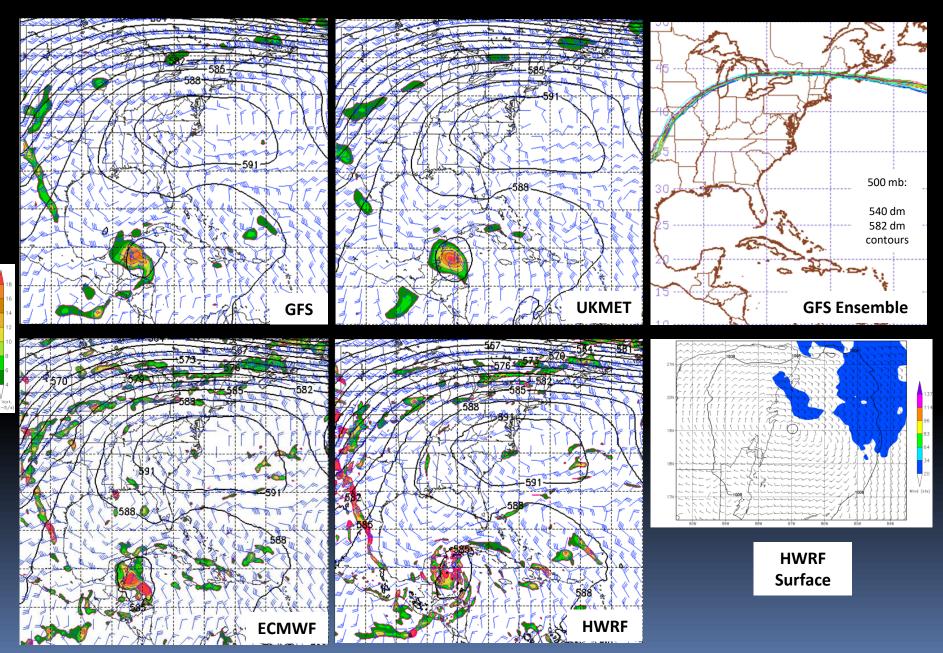

Several areas of 34+ kt winds, could support an initial intensity of 40 kt after accounting for under-sampling

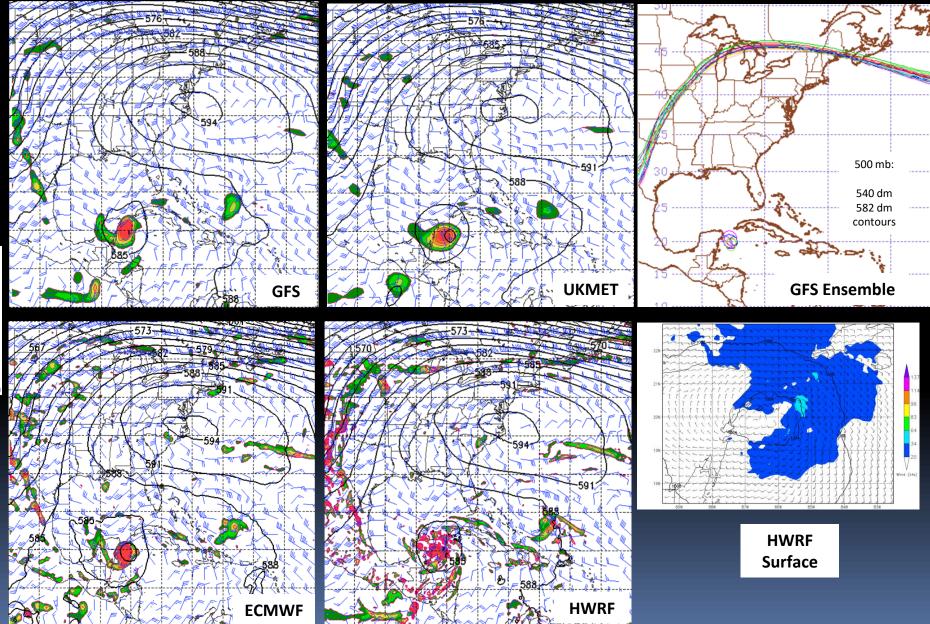
ASCAT-B 1514 UTC Wind Radii

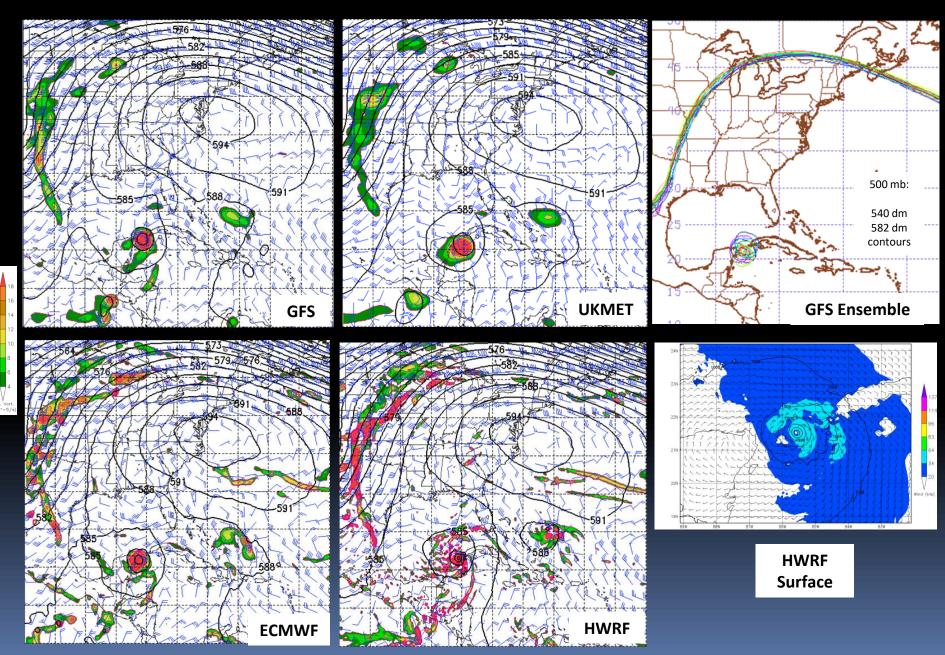


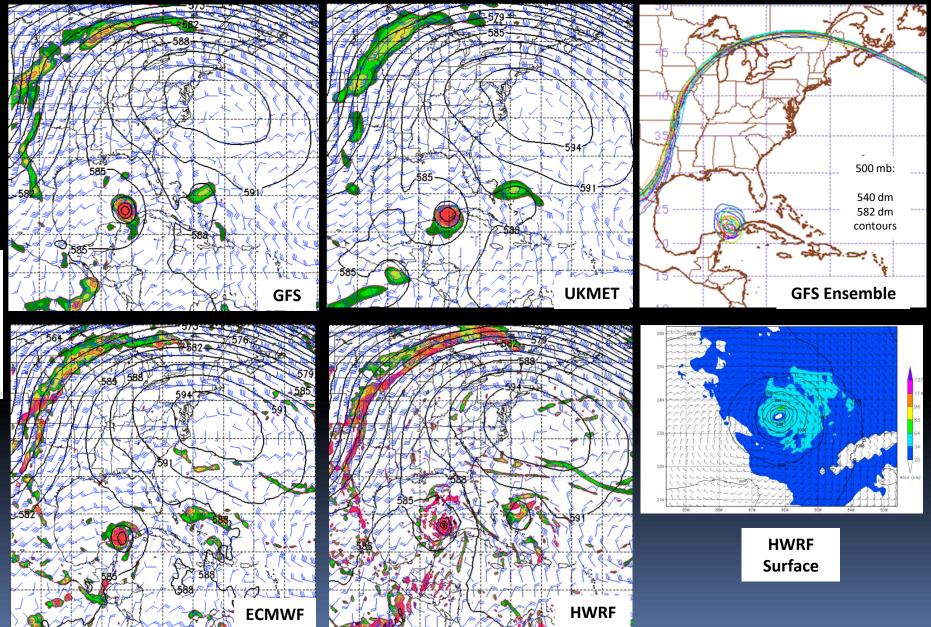
NW Quadrant: at least 100 n mi (due north) **SW Quadrant**: 0 (cut off, but little reason to suspect higher winds are farther west) NE Quadrant: 130 n mi (almost due east) SE Quadrant: 170 n mi

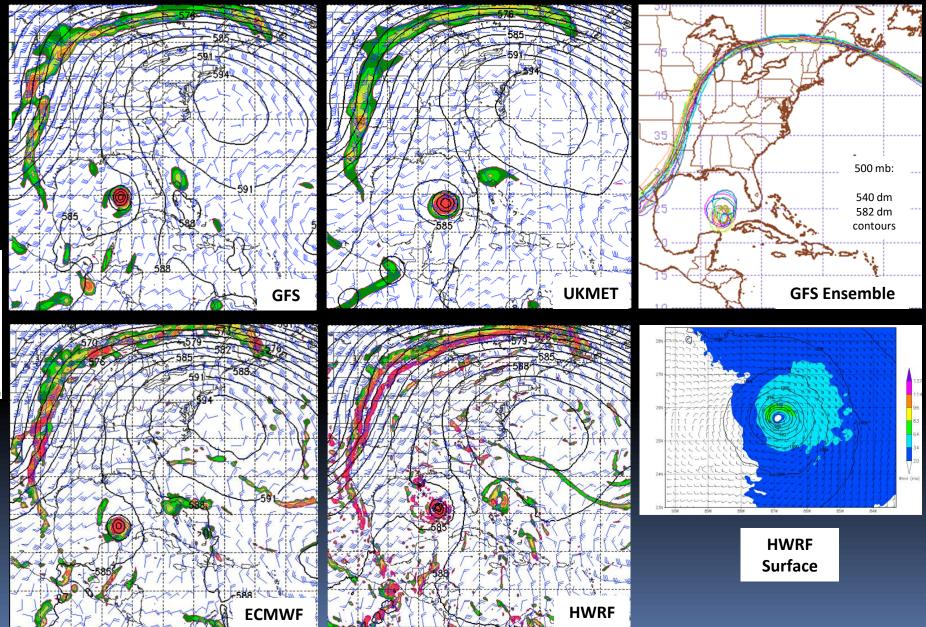
Let's enter the fix into the ATCF

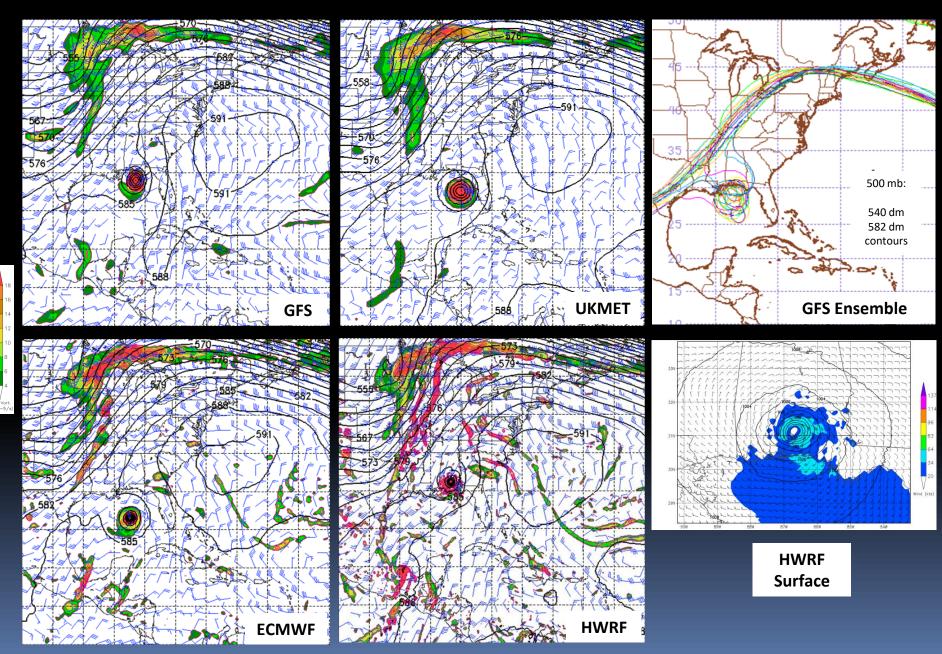


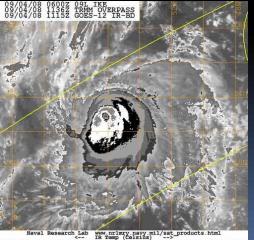

Working Best Track with 1514 UTC ASCAT-B Fix

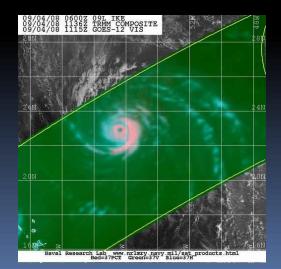


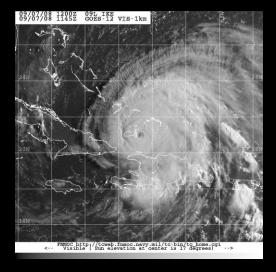

While we wait for the Aircraft and Satellite Fixes... let's examine the 1200 UTC model guidance


00h (initial conditions)



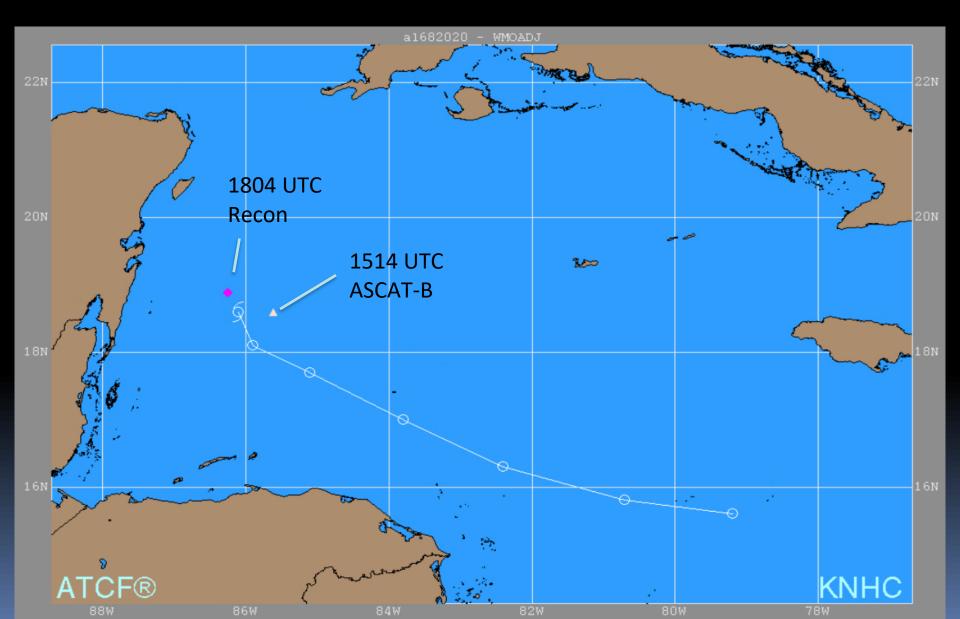



18:00-18:45 UTC **Receive fix data**

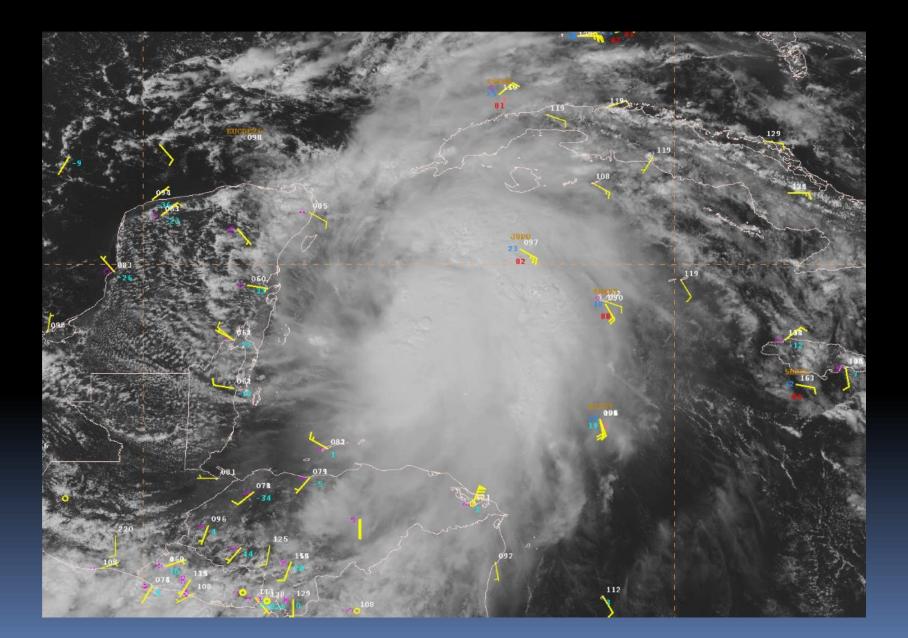

Hurricane specialist receives estimates of location and intensity via satellite imagery from 2 different agencies

Determine the center location Determine past motion (6-12 h) Determine the intensity/wind speed Determine various wind radii 34-, 50-, and 64-kt (when applicable)

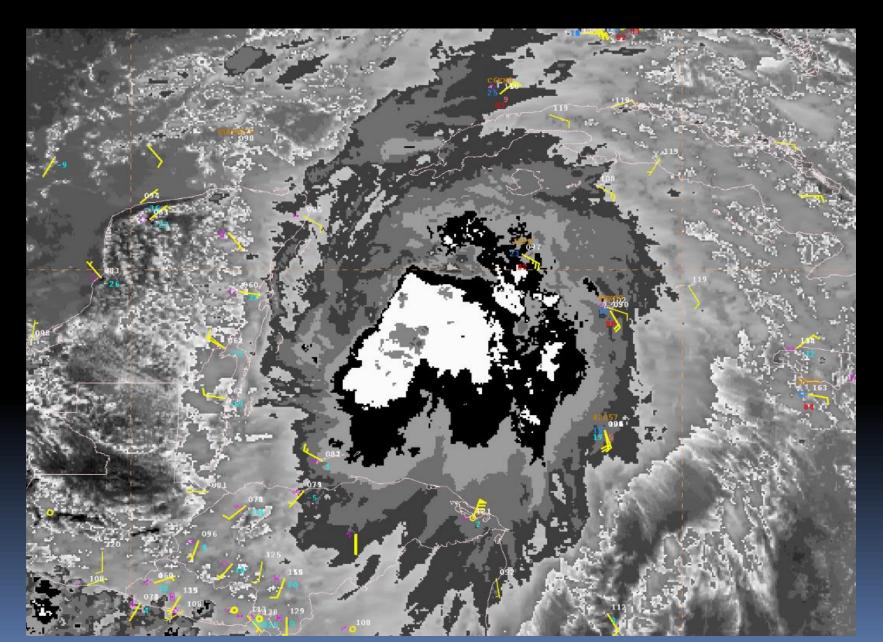
-90 -80 0 -60 -50 -40 -10 -20 -10 0 10 20 10 40


18:00-18:45 UTC **Receive fix data**

000 URNT12 KNHC 161845 VORTEX DATA MESSAGE AL502020 A. 16/18:05:20Z 18.89 deg N 086.24 deg W Position 925 mb 714 m EXTRAP 1001 mb Minimum pressure D. Ε. NA F. NA NA G. Maximum surface wind H. 40 kt 003 deg 57 nm 17:45:00Z Ι. 087 deg 42 kt J. 010 deg 70 nm 17:41:00Z 39 kt 133 deg 81 nm 18:33:30Z 225 deg 48 kt 133 deg 105 nm 18:42:00Z P. 21 C / 766 m 23 C / 757 m Maximum flight 20 C / NA S. 1345 / 9 level wind T. 0.02 / 7 nm U. AF305 0114A CYCLONE OB 07 MAX FL WIND 48 KT 133 / 105 NM 18:32:00Z SLP EXTRAP FROM 925 MB ;


The first reconnaissance mission of this storm is underway, and the plane located the center of the tropical storm just after 18Z. Final fix with an outbound maximum flight-level wind of 48 kt, that equates to 36 kt (75%) at the surface.

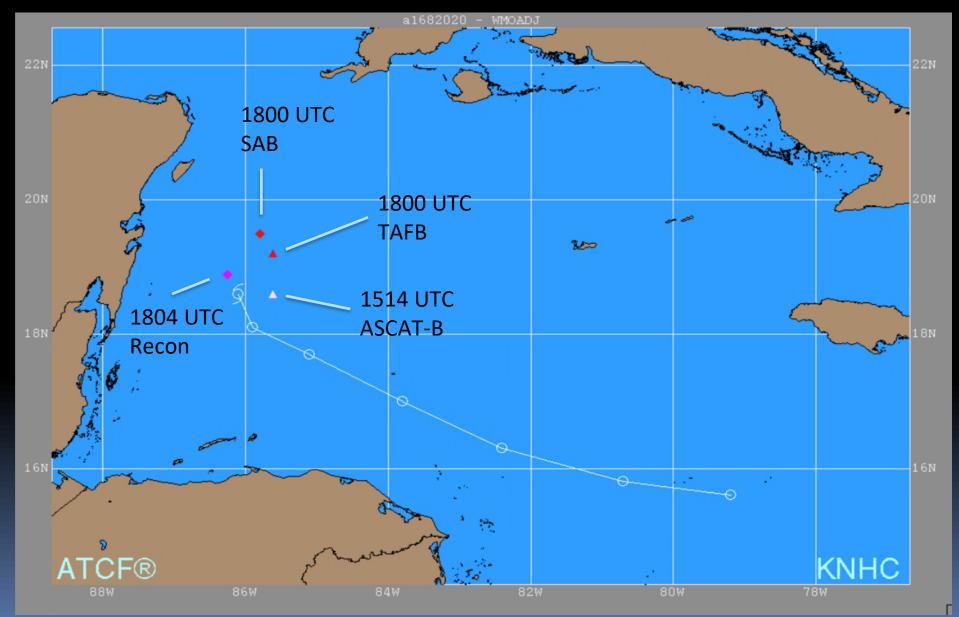
Let's see how this compares to the ASCAT fix while we wait for the Dvorak fixes to arrive


Working Best Track with 1804 UTC Aircraft Fix

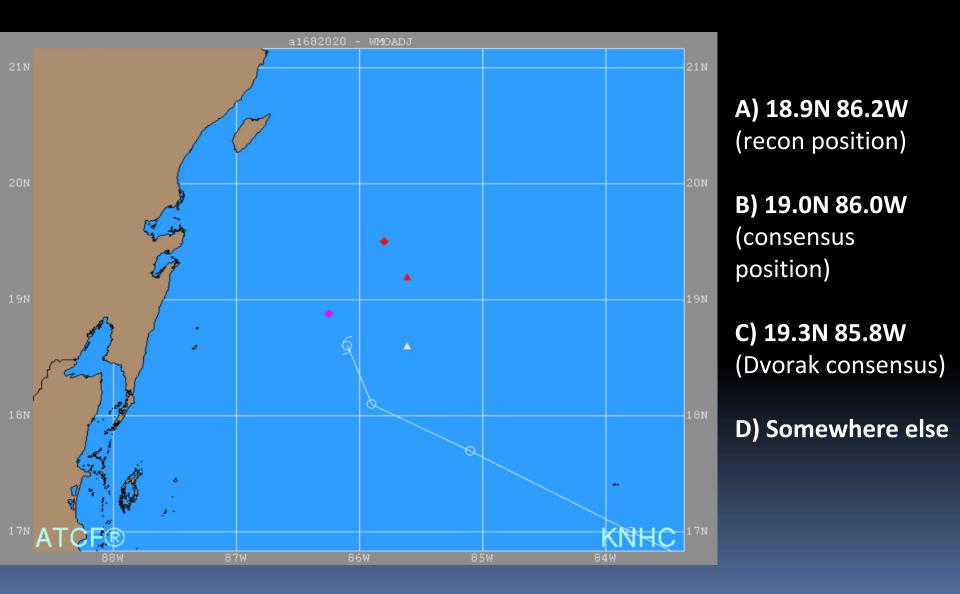
Vis Satellite Image- 1800 UTC

IR Satellite Image- 1800 UTC BD Enhancement

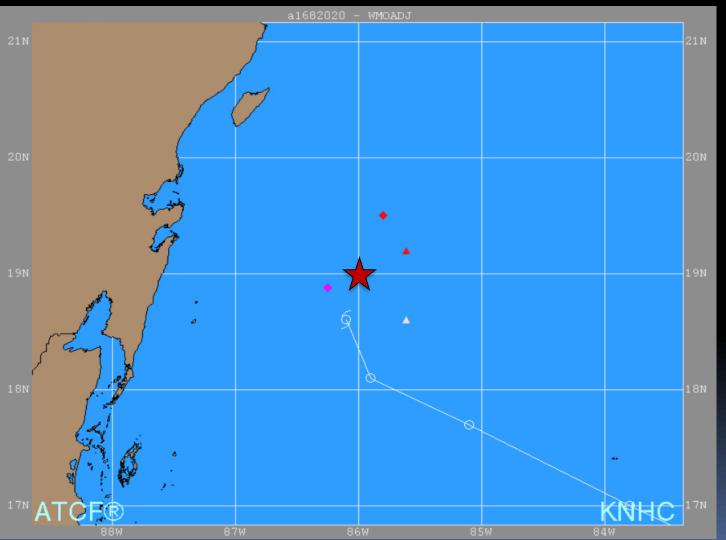
TAFB and SAB Dvorak Satellite Fixes


T	AFB SATELLITE C	LASSIFICATION	
Basin: Atlantic		Name: AL682020	
Date: 16 Apr 2020		Time: 18:00 UTC	
Latitude: 19.2N Longitude:	85.6W		
SATELLITE:	CHANNEL:	RESOLUTION (KM):	LOCATION CONFIDENCE:
GOES16	VIS IR	1	5
CLASSIFICATION TYPE:			
Tropical, DT = 2.5 BAS	ED ON Curved Ba	nd WITH $CF = 2$.	5 AND BF = 0.0
FINAL T: CURRENT INTENSITY:	MAXIMUM WIND (KT):	MIN PRESSURE (MB):	INTENSITY CONFIDENCE:
2.5 2.5	35	1005	2
24 HR DEV TREND T:	MODEL EXPECTED T:	PATTERN T:	
D	2.0	2.5 A	
EYE DIAMETER (NM):			METEOROLOGIST:
			ASL
REMARKS:			

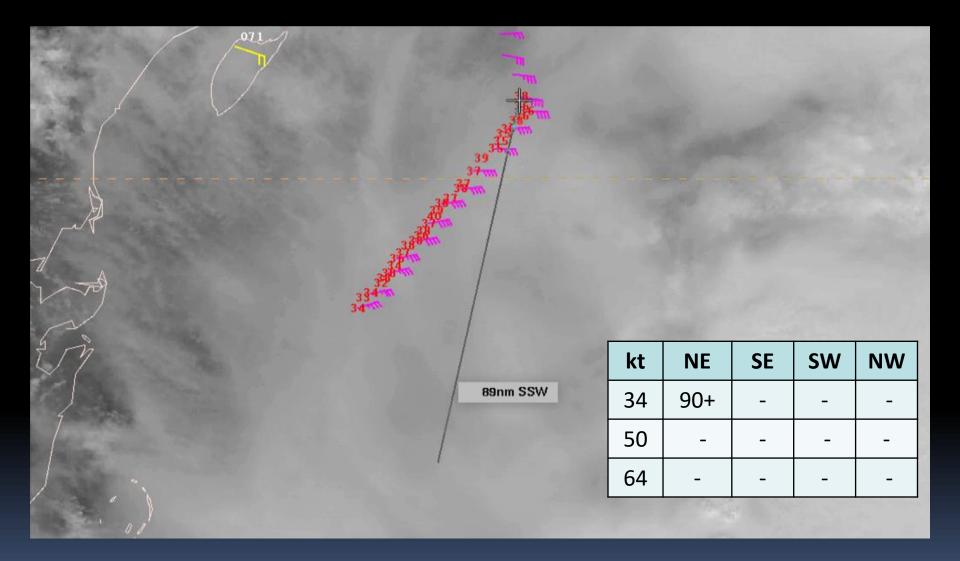
Now it's time to enter the Dvorak fixes and see how they compare to the aircraft and the ASCAT


SAB SATELLITE CLASSIFICATION						
Latitude: 19.5N	Longitude: 85.8W	TIME (UTC): 1745 UTC				
T/CI NUMBER: 2.5/2.5 (35 kt)		SAT: GOES-16				
LOCATION CONFIDENCE: 3	PIC: VIM	ANALYST: BZ				

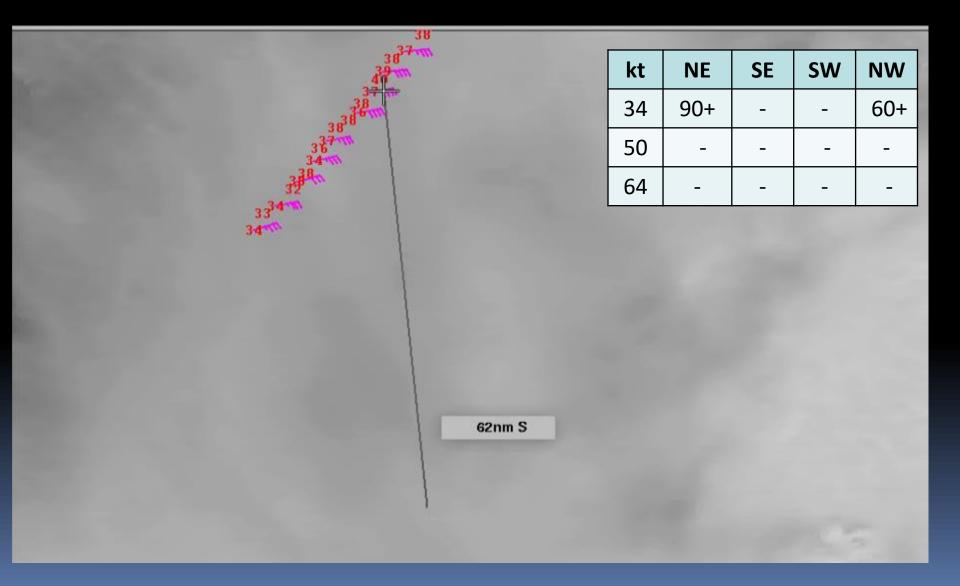
PREVIOUS TAFB INTERMEDIATE FIX							
DATE:	16 Apr	2020				TIME (UTC)	15:00
Latitude:	19.6N	Longitude:	85.8W			SAT:	GOES16
LOCATION	CONFIDENCE:	5	PIC	:	VIS IR	ANALYST:	ASL


Now that we have all the 18z fixes, let's determine the 18z best-track position and intensity

Where do you think we should center the tropical storm at 18Z?

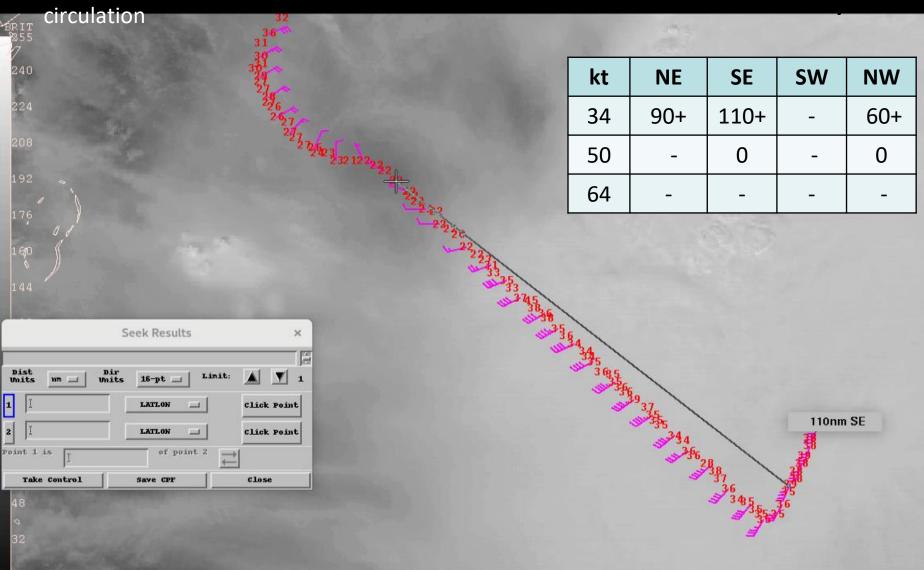


Where do you think we should center the tropical storm at 18Z?



The NHC forecaster selected the consensus position, but noted the uncertainty was higher than usual

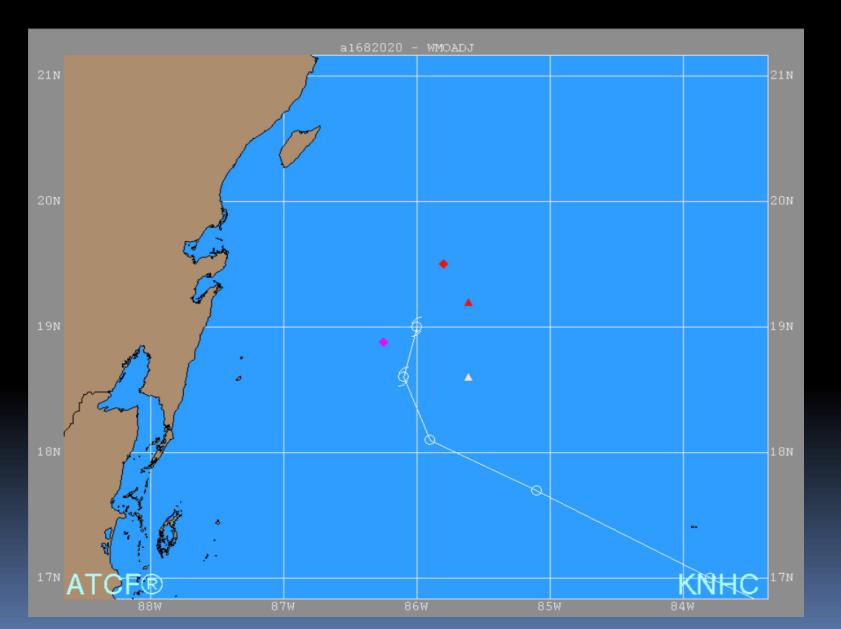
Checking Wind Radii from Aircraft Data



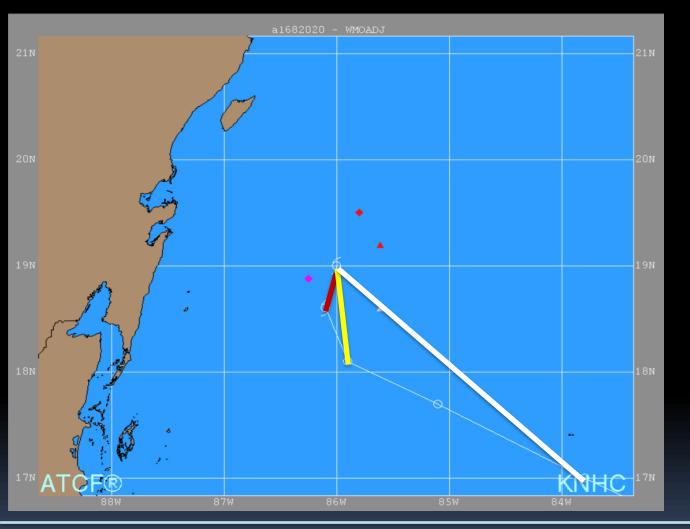
Checking Wind Radii from Aircraft Data

Checking Wind Radii from Aircraft Data

Radii observed by ASCAT were larger than the sampling area of the reconnaissance aircraft, however the aircraft data appears to confirm the large nature of the


Determine the intensity and pressure

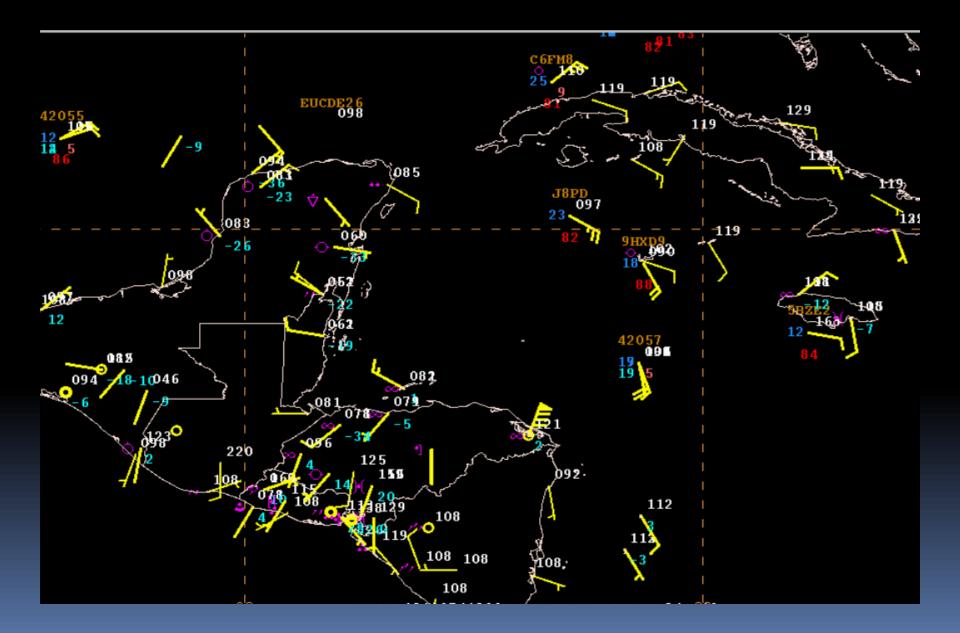
Fix Type	Intensity (kt)
ASCAT-B	38
Recon (SFMR)	40
Recon (Flight-level adjusted)	36
Dvorak (TAFB)	35
Dvorak (SAB)	35
What should we use for the initial in	tensity?
A) 35 kt	
B) 40 kt	
C) Something else	


Determine the intensity and pressure

Fix Type	Pressure (mb)
Aircraft (extrapolated from 925 mb)	1001
Dvorak (TAFB)	1005
Dvorak (SAB)	1005
Knaff-Zehr-Courtney W/P relationship	999
Dvorak Wind/Pressure relationship (40kt)	1002
What should we use for the initial pres A) 1002 mb B) 1001 mb C) 1000 mb D) 999 mb	sure?

Best-Track through 1800 UTC... Ready to initialize the guidance.

Compute/Determine TC Motion

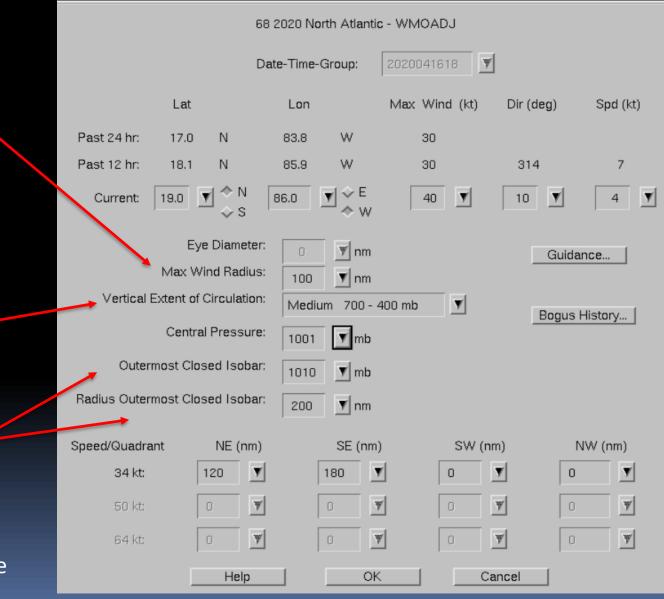

NHC typically uses a longer-term representative motion to smooth out short term wobbles, however when a cyclone is turning a motion computed from a shorter time may be necessary

6 h: 15°/ 4 kt 12 h: 355°/ 4 kt 24 h: 315°/ 7 kt

Which motion do you think is most representative?

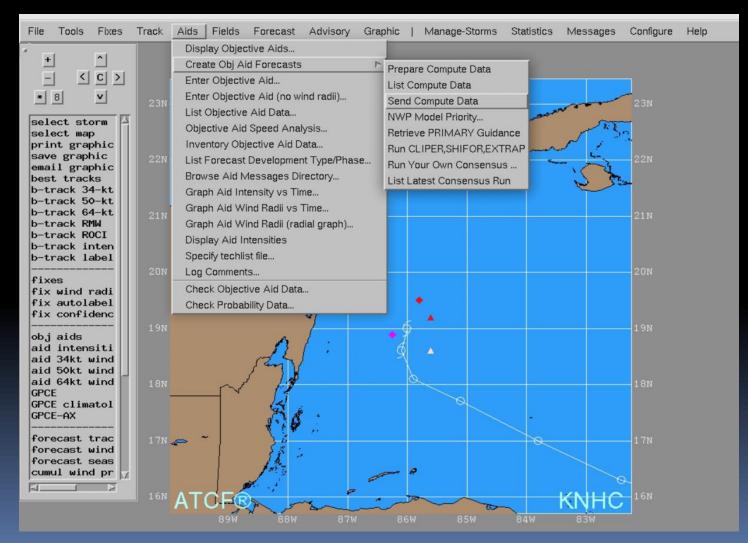
A) 6hB) 12 hC) 24 hD) Something else

TC Size (outermost closed isobar)

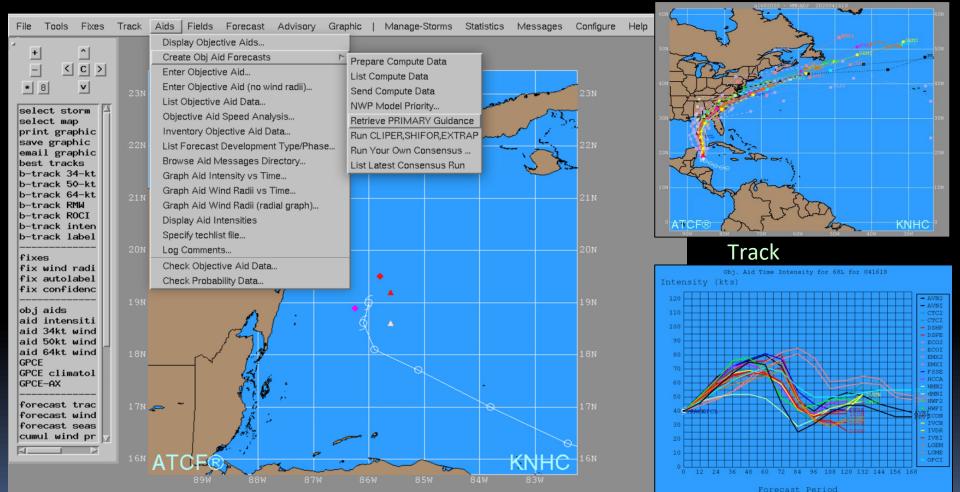


Guidance parameters for 1800 UTC

Max Wind Radius (Radius of Maximum Wind/RMW) determined from aircraft, ASCAT. important for storm surge modeling

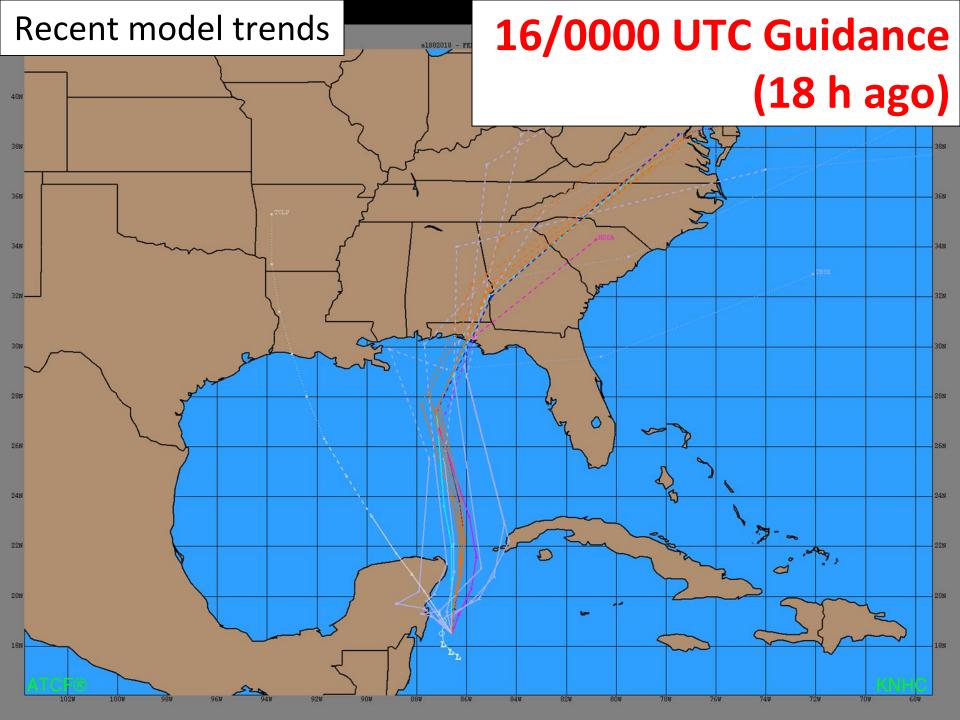

Vertical Extent of Circulation: Subjective indication of the height/depth of a tropical cyclone, used by HWRF/HMON

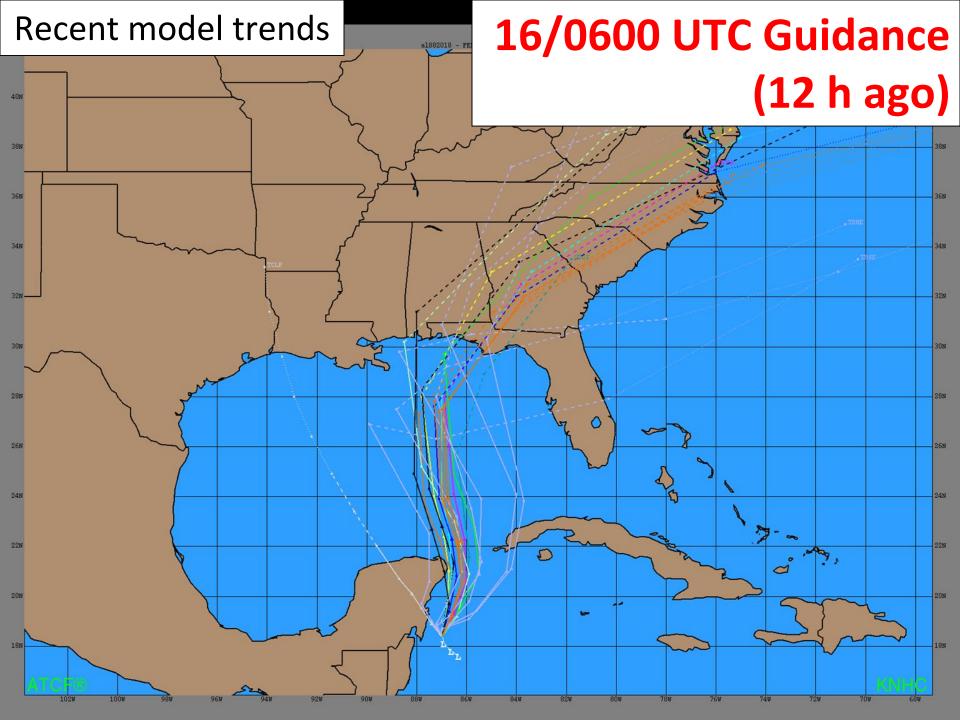
Outermost closed isobar computed from surface observations. May use global model output when no surface obs are available

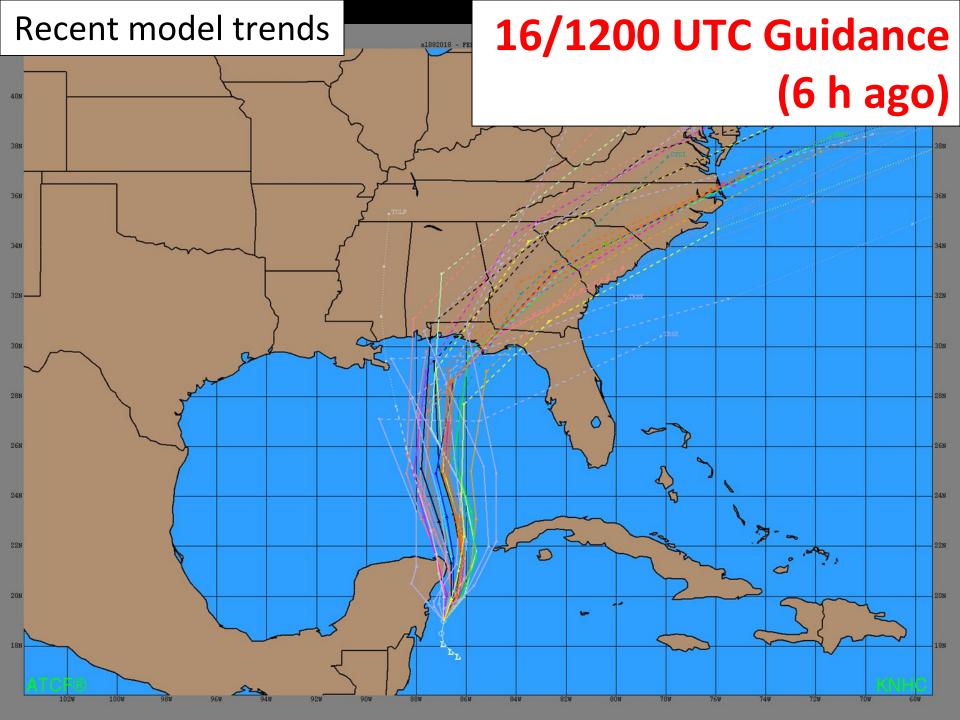

18:45-19:00 UTC Initialize models

Submit the guidance to the super computer to run statistical models and the next (18Z) cycle of dynamical models. And don't forget to run the HWRF/HMON!

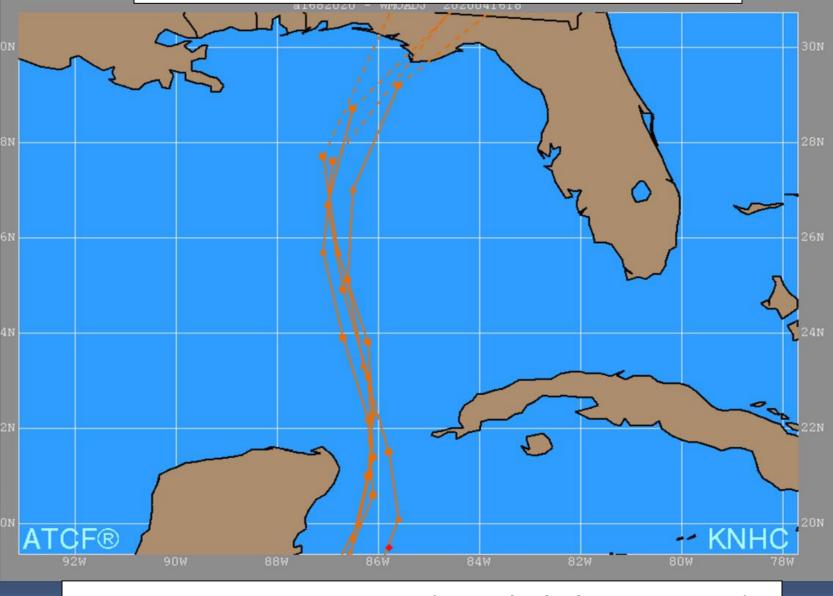
19:00-19:10 UTC Receive model guidance

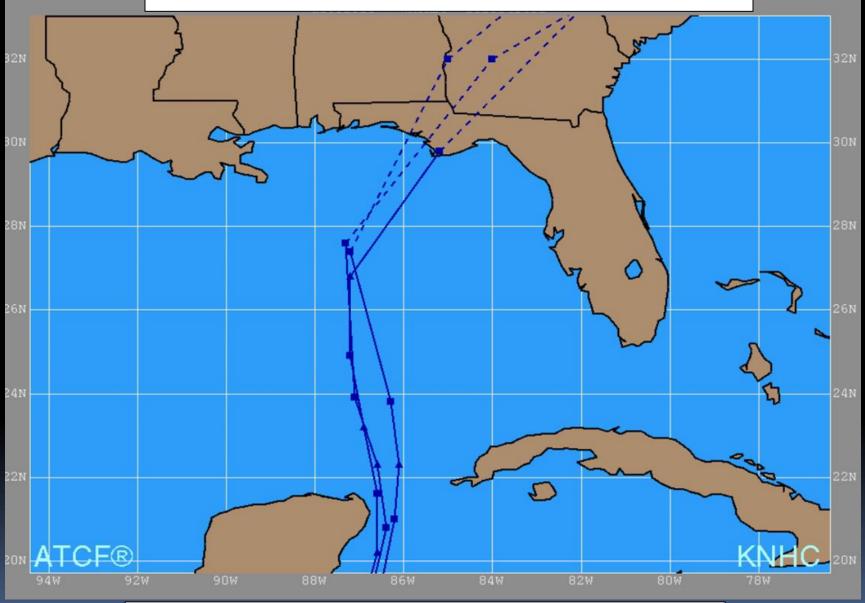

Then analyze numerical model output and prepare track, intensity, and wind radii forecasts




Intensity Guidance

Preparing the Track Forecast


Before we begin, let's examine recent model trends...



TVCN 0000-1800 UTC

TVCN Consensus trending slightly eastward

OFCL 0000-1200 UTC

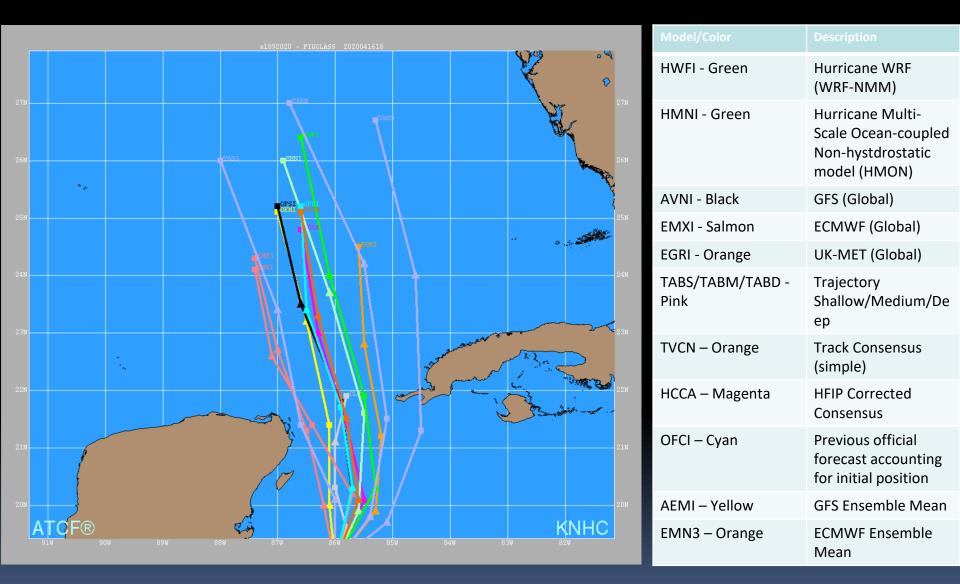
OFCL also shifted slightly eastward

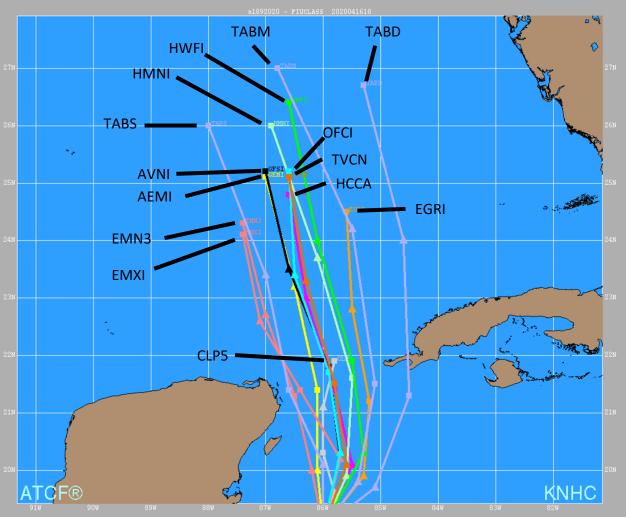
Let's Begin

al892020 - FIUCLASS 2020041618		Model/Color	Description
		HWFI - Green	Hurricane WRF (WRF-NMM)
21N	1N	HMNI - Green	Hurricane Multi- Scale Ocean-coupled Non-hystdrostatic model (HMON)
		AVNI - Black	GFS (Global)
		EMXI - Salmon	ECMWF (Global)
	ON	EGRI - Orange	UK-MET (Global)
		TABS/TABM/TABD - Pink	Trajectory Shallow/Medium/De ep
		TVCN – Orange	Track Consensus (simple)
191	9N	HCCA – Magenta	HFIP Corrected Consensus
		OFCI – Cyan	Previous official forecast accounting for initial position
		AEMI – Yellow	GFS Ensemble Mean
	8N	EMN3 – Orange	ECMWF Ensemble Mean

a1892020 - FIUCLASS 2020041618	Model/Color	Description
S.	HWFI - Green	Hurricane WRF (WRF-NMM)
21N TABS OFCI TVCN HCCA	HMNI - Green	Hurricane Multi- Scale Ocean-coupled Non-hystdrostatic model (HMON)
AEMI	AVNI - Black	GFS (Global)
	EMXI - Salmon	ECMWF (Global)
20N EMN3 TABS HMNI EGRI 20N	EGRI - Orange	UK-MET (Global)
ТАВМ	TABS/TABM/TABD - Pink	Trajectory Shallow/Medium/De ep
ТАВО	TVCN – Orange	Track Consensus (simple)
19N CLP5 19N	HCCA – Magenta	HFIP Corrected Consensus
	OFCI – Cyan	Previous official forecast accounting for initial position
	AEMI – Yellow	GFS Ensemble Mean
	EMN3 – Orange	ECMWF Ensemble Mean

al892020 - FIUCLASS 2020041618	Model/Color	Description
	HWFI - Green	Hurricane WRF (WRF-NMM)
24N	HMNI - Green	Hurricane Multi- Scale Ocean-coupled Non-hystdrostatic model (HMON)
amaware the second	AVNI - Black	GFS (Global)
a the second	EMXI - Salmon	ECMWF (Global)
22N 22N	EGRI - Orange	UK-MET (Global)
	TABS/TABM/TABD - Pink	Trajectory Shallow/Medium/De ep
21N	TVCN – Orange	Track Consensus (simple)
20N 20N	HCCA – Magenta	HFIP Corrected Consensus
191	OFCI – Cyan	Previous official forecast accounting for initial position
	AEMI – Yellow	GFS Ensemble Mean
	EMN3 – Orange	ECMWF Ensemble Mean

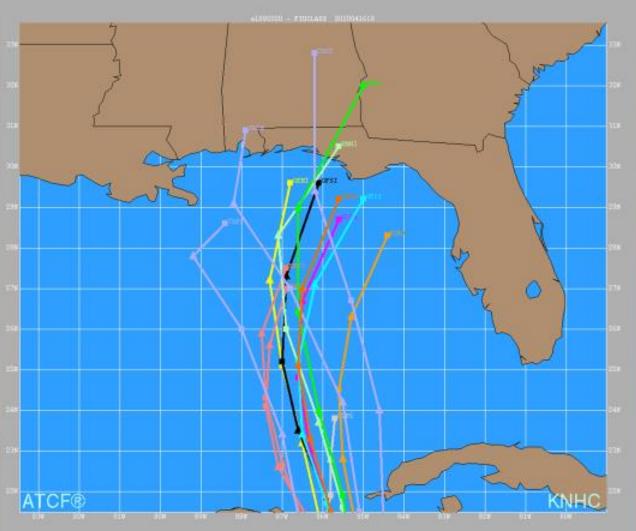

al892020 - FIUCLASS 2020041618	Model/Color	Description
	HWFI - Green	Hurricane WRF (WRF-NMM)
24N OFCI TVCN AVNI HCCA	HMNI - Green	Hurricane Multi- Scale Ocean-coupled Non-hystdrostatic model (HMON)
	AVNI - Black	GFS (Global)
EMN3 EMXI AEMI	EMXI - Salmon	ECMWF (Global)
HMN	EGRI - Orange	UK-MET (Global)
	TABS/TABM/TABD - Pink	Trajectory Shallow/Medium/De ep
21N TABD 21N	TVCN – Orange	Track Consensus (simple)
	HCCA – Magenta	HFIP Corrected Consensus
19N CLP5	OFCI – Cyan	Previous official forecast accounting for initial position
	AEMI – Yellow	GFS Ensemble Mean
	EMN3 – Orange	ECMWF Ensemble Mean

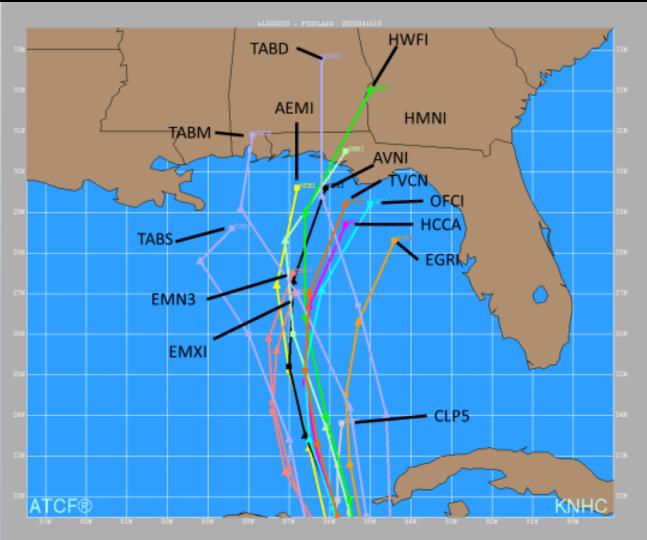

a1892020 - FIUCLASS 2020041618	Model/Color	Description
TABM	HWFI - Green	Hurricane WRF (WRF-NMM)
24N ATABD 24N ADHI TABS GFSI ATYON ATYON ATYON ATYON ATABD 24N 23N	HMNI - Green	Hurricane Multi- Scale Ocean-coupled Non-hystdrostatic model (HMON)
The second	AVNI - Black	GFS (Global)
	EMXI - Salmon	ECMWF (Global)
221	EGRI - Orange	UK-MET (Global)
	TABS/TABM/TABD - Pink	Trajectory Shallow/Medium/De ep
	TVCN – Orange	Track Consensus (simple)
201	HCCA – Magenta	HFIP Corrected Consensus
19N 19N	OFCI – Cyan	Previous official forecast accounting for initial position
	AEMI – Yellow	GFS Ensemble Mean
	EMN3 – Orange	ECMWF Ensemble Mean

al892020 - FIUCLASS 2020041618	Model/Color	Description
AVNI OFCI TVCN HWFI TABM	HWFI - Green	Hurricane WRF (WRF-NMM)
24N AEMI TABS A	HMNI - Green	Hurricane Multi- Scale Ocean-coupled Non-hystdrostatic model (HMON)
EMN3	AVNI - Black	GFS (Global)
EGRI EGRI	EMXI - Salmon	ECMWF (Global)
	EGRI - Orange	UK-MET (Global)
	TABS/TABM/TABD - Pink	Trajectory Shallow/Medium/De ep
21N	TVCN – Orange	Track Consensus (simple)
20N CLP5 20N	HCCA – Magenta	HFIP Corrected Consensus
19N	OFCI – Cyan	Previous official forecast accounting for initial position
	AEMI – Yellow	GFS Ensemble Mean
	EMN3 – Orange	ECMWF Ensemble Mean

Where would you place the 36 h forecast?

A) 23.0N 86.0W
B) 23.0N 86.5W
C) 23.5N 86.5W
D) 22.5N 86.5W




Model/Color	Description
HWFI - Green	Hurricane WRF (WRF-NMM)
HMNI - Green	Hurricane Multi- Scale Ocean-coupled Non-hystdrostatic model (HMON)
AVNI - Black	GFS (Global)
EMXI - Salmon	ECMWF (Global)
EGRI - Orange	UK-MET (Global)
TABS/TABM/TABD - Pink	Trajectory Shallow/Medium/De ep
TVCN – Orange	Track Consensus (simple)
HCCA – Magenta	HFIP Corrected Consensus
OFCI – Cyan	Previous official forecast accounting for initial position
AEMI – Yellow	GFS Ensemble Mean
EMN3 – Orange	ECMWF Ensemble Mean

Where would you place the 48 h forecast?

A) 25.0N 86.5W
B) 25.5N 86.5W
C) 24.5N 86.5W
D) 25.0N 86.0W
E) 25.0N 87.0W

Model/Color	Description
HWFI - Green	Hurricane WRF (WRF-NMM)
HMNI - Green	Hurricane Multi- Scale Ocean-coupled Non-hystdrostatic model (HMON)
AVNI - Black	GFS (Global)
EMXI - Salmon	ECMWF (Global)
EGRI - Orange	UK-MET (Global)
TABS/TABM/TABD - Pink	Trajectory Shallow/Medium/De ep
TVCN – Orange	Track Consensus (simple)
HCCA – Magenta	HFIP Corrected Consensus
OFCI – Cyan	Previous official forecast accounting for initial position
AEMI – Yellow	GFS Ensemble Mean
EMN3 – Orange	ECMWF Ensemble Mean

Model/Color	Description
HWFI - Green	Hurricane WRF (WRF-NMM)
HMNI - Green	Hurricane Multi- Scale Ocean-coupled Non-hystdrostatic model (HMON)
AVNI - Black	GFS (Global)
EMXI - Salmon	ECMWF (Global)
EGRI - Orange	UK-MET (Global)
TABS/TABM/TABD - Pink	Trajectory Shallow/Medium/De ep
TVCN – Orange	Track Consensus (simple)
HCCA – Magenta	HFIP Corrected Consensus
OFCI – Cyan	Previous official forecast accounting for initial position
AEMI – Yellow	GFS Ensemble Mean
EMN3 – Orange	ECMWF Ensemble Mean

Where would you place the 72 h forecast?

A) 30.0N 85.0W
B) 30.0N 86.0W
C) 29.0N 85.0W
D) 29.0N 86.0W
E) 28.0N 86.0W

Preparing the Intensity Forecast

SHIPS and LGEM Guidance

Intensity (kt)

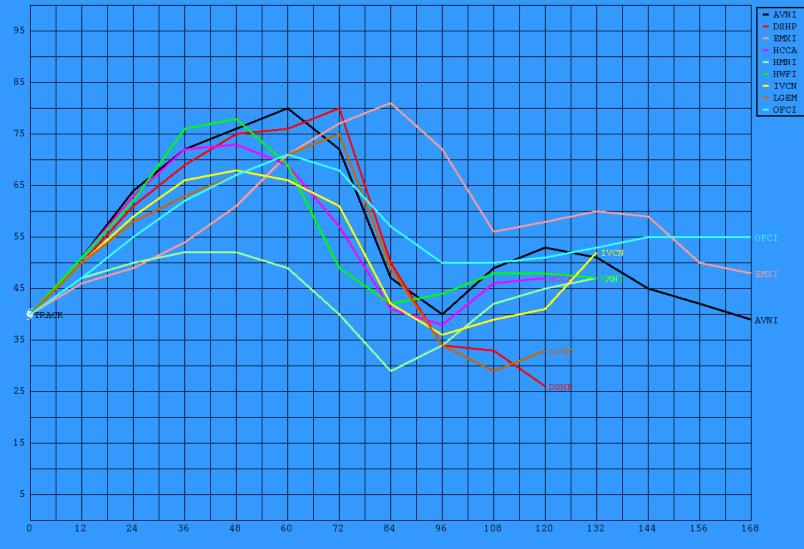
Values of the predictors

	×	* ATLAN	ITIC	2020) SHIPS	INTEN	ISITY F	ORECAS	т	*			
	×	* IR SA	AT DATA	A AVAIL	ABLE,		OHC AV	/AILABL	.E	*			
	×	SAMPL	E STOR	ALS M	502020	4/16/	20 18	B UTC		*			
TIME (HR)	0	6	12	18	24	36	48	60	72	84	96	108	120
V (KT) NO LAND	40	45	50	56	61	69	75	76	80	76	71	65	58
V (KT) LAND	40	45	50	56	61	69	75	76	80	50	34	33	26
V (KT) LGEM	40	45	50	54	58	63	67	71	75	49	34	29	33
Storm Type	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP
SHEAR (KT)	18	17	20	14	12	19	15	16	10	15	19	34	43
SHEAR ADJ (KT)	0	0	0	6	5	1	2	2	-1	0	4	4	8
SHEAR DIR	297	288	288	286	283	296	315	300	281	272	243	232	232
SST (C)	29.4	29.8	30.0	29.8	28.9	29.0	29.2	28.7	28.6	28.6	28.4	26.4	24.6
POT. INT. (KT)	156	164	169	165	149	151	155	147	146	147	146	123	108
ADJ. POT. INT.	141	150	155	152	136	136	138	130	129	132	132	113	100
200 MB T (C)	-52.7	-52.7	-53.0	-52.6	-52.3	-52.3	-51.6	-51.5	-50.8	-51.1	-51.1	-51.6	-52.4
200 MB VXT (C)	0.8	0.8	0.7	0.5	0.7	0.8	0.9	1.2	0.9	1.1	1.2	0.7	0.6
TH_E DEV (C)	9	9	8	8	9	9	10	9	10	8	5	1	0
700-500 MB RH	71	69	67	66	65	64	63	68	68	59	45	31	26
MODEL VTX (KT)	18	19	22	24	25	26	27	25	28	26	24	23	22
850 MB ENV VOR	72	75	80	80	72	60	50	29	46	18	25	32	38
200 MB DIV	60	45	25	43	48	23	35	49	60	41	101	66	70
700-850 TADV	2	4	9	13	12	24	23	20	12	18	13	-9	39
LAND (KM)	128	129	120	73	76	226	420	302	67	-149	-105	18	381
LAT (DEG N)	18.9	19.5	20.1	21.0	21.8	23.5	25.3	27.2	29.1	31.3	33.6	36.0	38.4
LONG(DEG W)	86.3	86.2	86.1	86.2	86.3	86.6	87.0	86.6	85.5	83.5	80.5	75.7	69.1
STM SPEED (KT)	5	6	7	9	9	9	9	10	12	16	20	26	29
HEAT CONTENT	54	59	61	50	30	30	71	34	27	3	2	0	0

Rapid Intensification Index probability of RI during next 24 hour

(SHIPS-RII PREDICTOR TABLE for 30 KT OR MORE MAXIMUM WIND INCREASE IN NEXT 24-h)

Predictor		Value	RI Pred	licto	r Range	Scaled Value(0-1)	% Contribution
12 HR PERSISTENCE (KT)	:	10.0	-49.5	to	38.5	0.68	6.4
850-200 MB SHEAR (KT)	:	16.5	30.1	to	2.3	0.49	2.1
HEAT CONTENT (KJ/CM2)	:	50.8	0.0	to	157.3	0.32	1.4
STD DEV OF IR BR TEMP	:	16.1	36.6	to	2.8	0.61	2.3
2nd PC OF IR BR TEMP	:	0.9	2.9	to	-2.9	0.34	1.2
MAXIMUM WIND (KT)	:	40.0	22.5	to	132.0	0.47	0.9
BL DRY-AIR FLUX (W/M2)	:	124.6	893.2	to	-67.1	0.80	2.1
POT = MPI-VMAX (KT)	:	103.9	28.4	to	141.4	0.67	0.4
D200 (10**7s-1)	:	44.2	-29.7	to	185.9	0.34	0.2
%area of TPW <45 mm upshear	:	0.0	100.0	to	0.0	1.00	0.2


SHIPS Prob RI for 20kt/ 12hr RI threshold= 8% is 1.6 times climatological mean (5.0%) SHIPS Prob RI for 25kt/ 24hr RI threshold= 21% is 2.0 times climatological mean (10.9%) SHIPS Prob RI for 30kt/ 24hr RI threshold= 17% is 2.6 times climatological mean (6.7%) SHIPS Prob RI for 35kt/ 24hr RI threshold= 12% is 3.1 times climatological mean (3.8%) 4.0 times climatological mean (2.4%) SHIPS Prob RI for 40kt/ 24hr RI threshold= 10% is 2.8 times climatological mean (4.5%) SHIPS Prob RI for 45kt/ 36hr RI threshold= 12% is SHIPS Prob RI for 55kt/ 48hr RI threshold= 12% is 2.6 times climatological mean (4.6%) SHIPS Prob RI for 65kt/ 72hr RI threshold= 21% is 3.9 times climatological mean (5.4%)

Matrix of RI probabilities

RI (kt / h)	20/12	25/24	30/24	35/24	40/24	45/36	55/48	65/72
SHIPS-RII:	7.9%	21.5%	17.2%	11.9%	9.6%	12.4%	12.0%	20.9%
Logistic:	4.9%	12.6%	6.9%	3.6%	1.2%	4.7%	5.3%	10.1%
Bayesian:	3.2%	3.5%	1.3%	1.0%	0.2%	0.3%	0.1%	0.4%
Consensus:	5.3%	12.5%	8.4%	5.5%	3.7%	5.8%	5.8%	10.5%
DTOPS:	10.0%	46.0%	34.0%	22.0%	8.0%	18.0%	26.0%	2.0%

Obj. Aid Time Intensity for 89L for 041618

Intensity (kts)

Forecast Period

12 h Intensity Forecast

Obj. Aid Time Intensity for 89L for 041618 Intensity (kts) HWFI -51 - AVNI - DSHP 95 Green - EMXI - HCCA HMNI HMNI -47 HWFI 85 - IVCN Green - LGEM OFCI AVNI -51 75 Black 65 EMXI -46 Salmon 55 DSHP -50 Red 45 **TR** AVNI LGEM -48 35 Orange IVCN -50 25 Yellow 15 HCCA – 51 Magenta 5 OFCI - Cyan 47 24 36 48 60 72 84 96 108 120 132 144 156 168

Forecast Period

24 h Intensity Forecast

Obj. Aid Time Intensity for 89L for 041618 Intensity (kts) HWFI -62 - AVNI - DSHP 95 Green - EMXI - HCCA HMNI HMNI -50 HWFI 85 - IVCN Green - LGEM OFCI AVNI -64 75 Black 65 EMXI -49 Salmon 55 DSHP -61 Red 45 TRAC AVNI LGEM -58 35 Orange IVCN -50 25 Yellow 15 HCCA – 63 Magenta 5 OFCI - Cyan 55 48 0 12 36 60 72 84 96 108 120 132 144 156 168

Forecast Period

36 h Intensity Forecast

Obj. Aid Time Intensity for 89L for 041618	Model/Colo	Intensity
Intensity (kts)	r	
95 	HWFI - Green	76
85 HWFI - IVCN - LGEM - OFCI	HMNI - Green	52
65	AVNI - Black	72
55 OFCI	EMXI - Salmon	54
45 TRACK	DSHP - Red	69
35 LGED LGED 25	LGEM - Orange	63
	IVCN - Yellow	66
5	HCCA – Magenta	72
0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 Forecast Period	OFCI - Cyan	62

What would be your 36 h intensity forecast?

A) 60 kt or less
B) 65 kt
C) 70 kt
D) 75 kt
E) 80 kt or greater

48 h Intensity Forecast

Obj. Aid Time Intensity for 89L for 041618	Model/Colo	Intensity
Intensity (kts)	r	
95 95 95 95 95 95 95 95	HWFI - Green	78
85 HWFI - IVCN - LGEM - OFCI	HMNI - Green	52
	AVNI - Black	76
55 OFCI	EMXI - Salmon	61
45 TRACK	DSHP - Red	75
35 LGEN LGEN 25	LGEM - Orange	67
	IVCN - Yellow	68
5	HCCA – Magenta	73
0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 Forecast Period	OFCI - Cyan	67

What would be your 48 h intensity forecast?

A) 65 kt or less
B) 70 kt
C) 75 kt
D) 80 kt
E) 85 kt or greater

72 h Intensity Forecast

Obj. Aid Time Intensity for 89L for 041618 Intensity (kts) HWFI -49 - AVNI - DSHP 95 Green - EMXI - HCCA HMNI HMNI -40 HWFI 85 - IVCN Green - LGEM OFCI AVNI -72 75 Black 65 EMXI -77 Salmon 55 DSHP -80 Red 45 TRA AVNI LGEM -75 35 Orange IVCN -61 25 Yellow 15 HCCA – 57 Magenta 5 OFCI - Cyan 68 24 0 12 36 48 60 84 96 108 120 132 144 156 168

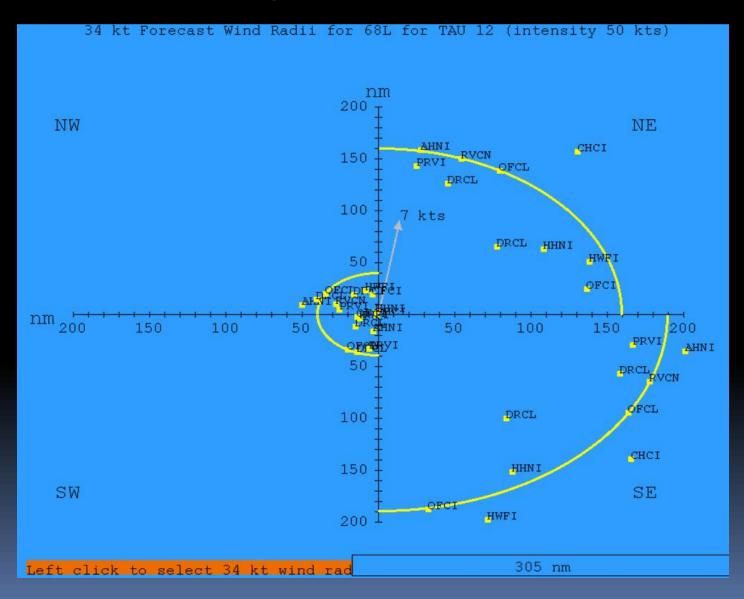
Forecast Period

What would be your 72 h intensity forecast?

A) 65 kt or less
B) 70 kt
C) 75 kt
D) 80 kt
E) 85 kt or greater

New Fix Data

New aircraft data has just arrived. The aircraft measured SFMR winds of 53 kt and a maximum flight-level wind of 56 kt. Do we need to update our intensity or track forecasts and re-submit the model data?


000 URNT12 KNHC 161945
VORTEX DATA MESSAGE AL682020 A. 07/19:34:10Z
B. 19.19 deg N 085.78 deg W
C. 925 mb 686 m
D. EXTRAP 999 mb
E. NA
F. NA
G. NA H. 53 kt
I. 102 deg 62 nm 19:24:00Z
J. 209 deg 56 kt
K. 105 deg 49 nm 19:28:30Z
L. 34 kt
M. 226 deg 101 nm 19:31:30Z
N. 256 deg 32 kt
0. 226 deg 106 nm 19:33:00Z
P. 21 C / 763 m Q. 24 C / 764 m
R. 20 C / NA
S. 1345 / 09
T. 0.02 / 3 nm
U. AF305 0114A CYCLONE OB 10
MAX FL WIND 56 KT 105 / 49 NM 19:28:30Z
SLP EXTRAP FROM 925 MB
;

Preparing the Wind Radii Forecast

Wind Radii Forecast Dialogue Box

	隆 Fore	cast Wir	nd Radii I	Dialog - A	MS al7	92010)									×	
Enter your radii 📃 📃								TAU					_ т	AU:	0		Select forecast period.
prediction (n mi) for	34 kt:	a cir	rcle 🔷 d	_	NE (nr 130		SE (SW 40	— i=		/ (nm)	v 1		12	j	
each forecast period	50 kt:		rcle 🔷 d		60	V	40		-	= -		= 7	- 1		24 36		Radii forecasts only out
each forecast periou	64 kt:	÷	rcle 🔷 d	· [0	<u>v</u>	40	 	0			_ 2	2 7		48		to 72 h
		V 01		quuu	U	,	0		0		<u> </u>		1		72	1	
			Use prev							Delet	e Radii				96 120	1	
			se TAU (Dis	splay	Option	з	L.				
			e DRCL - se DRCL											М	lax Wi 75 kt		
	Gra		e-Forec			NE	E	SE	15	sw	NV	V			ir: 30		
			lect radii			34	 4 kt	1 5	 50 kt	1	64 kt			Sp	d: 10	kts	
				(3													
	Tech	TAU	V-Max	(kte) S	Wind 4 knot			ance fo	r TAU D k no t		(nm)	E.	1 knot i	radii (n m)	_	
Guidance	EHXI	12	63	0	0	0	3							aun (
	GFDT GFTI	12 12	94 69	215 48	56	19	167 34	134 28	53		17	74 17	71 27	4	52 10		
	MRCL NGPI	12 12 12	75 60 52	135 0	95 14	0	120 0	70	45		50	40	20	15	25		
	NGPS Ngxi	12	53 60	177 0	121 61	68 0	93 0	70	0	0	75					<u>F</u>	
	⊴					Curr	rent Fr	precast									
		TAU	V-Max	(kts)	34 knot				io knot	: radii	(nm)	6	4 knot	radii ((nm)		
		0 12	60 75	130 130	90 90		100 100	60 60	40 40	0 0	40 40					A	Summary of your radii
		24 36	90 100	130 130	90 90	40 40	100 100	60 60	40 40	0 0	40 40						, ,
		48 72	110 105	130 130	90 90	40	100 100	60 60	40 40	0	40 40						forecasts
		96 120	85 55													Ţ	
	N.									_				_	12	_	
			Н	elp		Appl	У		ОК		(Cancel					

Forecasters can use a graphical plot to complete radii forecasts

Wind Radii Forecast Dialogue Box

	Foreca	ast Wind F	Radii L	Dialog	- WM	10ADJ a	16820	20 (or	nhc-l	ls-ate	cfsvr1	L.nhc.r	noaa.g	ov)	×
						٦	AU .	12					TAU	e En	0 1
			_	NE (nn	n)	SE (nn	1)	SW ((nm)	N	IW (n	m)		_	2
34 kt:	🔷 cira	cle 🔷 qua	ad	160	۷	190	V	40	y		40	V		2	24
50 kt:	🔷 cira	cle 🔷 qua	ad	0	V	0	V	0	y		0	V		3	6
64 kt:	🔷 cira	cle 🔷 qua	ad	0	¥	0	¥	0	Y		0	¥			18 1 0
Us	e previo	us TAU	1											_	2
									Delete	e Rad	lii			9	16
	Use D	RCL						Dis	splay (Optio	ns			1:	20
	Use R	VCN	1	Use F	RVCN	I - All Tau	s								10 Pm - 1
														Max 50	kts
														Dir:	12
Gra	aph/Sele	ect radii (ra	adial g	raph)	3	14 kt	5	0 kt		64	kt]		Spd:	7 kts
				Wind	d Rad	lii Guidan	ice for	TAU	12						
Tech	TAU	V-Max (kt	:s) 3	4 knot	radii	(nm)	50) knot	radii (ı	nm)		64 kr	not rad	ii (nm)
AHNI	12	49	161	205	17	51			<u>,</u>	,		64 kr	not rad	ii (nm)
AHNI DRCL CHCI	12 12 12	49 50 50	161 134 204	205 169 217	17 40 2	51 43 0	42 6	49 4	0	0		64 kr	not rad	ii (nm	
AHNI DRCL	12 12	49 50	161 134	205 169	17 40	51 43	42	49	0	0		64 kr	not rad	ii (nm	
AHNI DRCL CHCI DRCL HHNI HWFI	12 12 12 12 12 12 12 12	49 50 50 50 46 51	161 134 204 102	205 169 217 131 176 211	17 40 2 19	51 43 0 25	42 6	49 4	0	0		64 kr	not rad	ii (nm	
AHNI DRCL CHCI DRCL HHNI	12 12 12 12 12 12	49 50 50 50 50 46	161 134 204 102 126 148	205 169 217 131 176	17 40 2 19 0 13	51 43 0 25 3 24	42 6 34	49 4 40	0 0 0	0 0 0		64 kr	not rad	ii (nm	
AHNI DRCL CHCI DRCL HHNI HWFI OFCI	12 12 12 12 12 12 12 12 12	49 50 50 50 46 51	161 134 204 102 126 148	205 169 217 131 176 211	17 40 2 19 0 13 14	51 43 0 25 3 24	42 6 34 5	49 4 40	0 0 0	0 0 0		64 kr	not rad	ii (nm	
AHNI DRCL CHCI DRCL HHNI HWFI OFCI	12 12 12 12 12 12 12 12 12	49 50 50 50 46 51 47 V-Max (k	161 134 204 102 126 148 139	205 169 217 131 176 211 191	17 40 2 19 0 13 14 Cur t radii	51 43 0 25 3 24 20 rrent Fore (nm)	42 6 34 5	49 4 40 6	0 0 0	0 0 0 2			not rad		
AHNI DRCL CHCI DRCL HHNI HWFI OFCI	12 12 12 12 12 12 12 12 12 TAU	49 50 50 50 51 47 47 V-Max (k 40	161 134 204 102 126 148 139 ts) 3 120	205 169 217 131 176 211 191 34 knot	17 40 2 19 0 13 14 Cur t radii 0	51 43 0 25 3 24 20 rrent Ford (nm) 0	42 6 34 5	49 4 40 6	0 0 0	0 0 0 2					
AHNI DRCL CHCI DRCL HHNI HWFI OFCI	12 12 12 12 12 12 12 12 12 12 12 12 12 24	49 50 50 50 50 46 51 47 V-Max (k 40 50 55	161 134 204 102 126 148 139 ts) 3 120 160 165	205 169 217 131 176 211 191 34 knot 180 190 215	17 40 2 19 0 13 14 Cur t radii 0 40 30	51 43 0 25 3 24 20 rrent Fore (nm) 0 40 55	42 6 34 5 ecast 5	49 4 40 6 0 knot	0 0 0 radii (0 0 2 2 (nm)					
AHNI DRCL CHCI DRCL HHNI HWFI OFCI	12 12 12 12 12 12 12 12 12 12 TAU	49 50 50 46 51 47 V-Max (k 40 50	161 134 204 102 126 148 139 ts) 3 120 160	205 169 217 131 176 211 191 34 knot 180 190	17 40 2 19 0 13 14 Cur t radii 0 40	51 43 0 25 3 24 20 rrent Fore (nm) 0 40	42 6 34 5 ecast	49 4 6 0 knot	0 0 0 radii (0 0 0 2					
AHNI DRCL CHCI DRCL HHNI HWFI OFCI	12 12 12 12 12 12 12 12 12 12 12 12 12 1	49 50 50 50 46 51 47 V-Max (k 40 50 55 65 65 70	161 134 204 102 126 148 139 ts) 3 120 160 165 175 180 180	205 169 217 131 176 211 191 34 knot 180 190 215 240 250 255	17 40 2 19 0 13 14 Cur t radii 40 30 45 55 65	51 43 0 25 3 24 20 (nm) 0 40 55 85 90 85	42 6 34 5 <u>ecast</u> 5 5 55 55	49 4 6 0 knot 35 40 45 50	0 0 0 radii (0 10 20	0 0 2 2 (nm) 20 25 30 30					
AHNI DRCL CHCI DRCL HHNI HWFI OFCI	12 12 12 12 12 12 12 12 12 12 12 12 12 1	49 50 50 46 51 47 V-Max (k 40 50 55 65 65 65	161 134 204 102 126 148 139 ts) 3 120 160 165 175 180	205 169 217 131 176 211 191 34 knot 180 190 215 240 250	17 40 2 19 0 13 14 14 Cur t radii 0 40 30 45 55	51 43 0 25 3 24 20 rent Fore (nm) 0 40 55 85 90	42 6 34 5 ecast 5 35 50 55	49 4 6 0 knot 35 40 45	0 0 0 radii (0 10	0 0 2 2 (nm) 20 25 30					
AHNI DRCL CHCI DRCL HHNI HWFI OFCI	12 12 12 12 12 12 12 12 12 12 12 12 12 1	49 50 50 50 50 50 46 51 47 V-Max (k 40 55 55 65 65 65 70 70 70	161 134 204 102 126 148 139 ts) 3 120 160 165 175 180 180	205 169 217 131 176 211 191 34 knot 180 190 215 240 250 255	17 40 2 19 0 13 14 Cur t radii 40 30 45 55 65	51 43 0 25 3 24 20 (nm) 0 40 55 85 90 85	42 6 34 5 <u>ecast</u> 5 5 55 55	49 4 6 0 knot 35 40 45 50	0 0 0 radii (0 10 20	0 0 2 2 (nm) 20 25 30 30					

Summary of your radii forecasts

Now let's decide if watches or warnings are required

Definitions of Hurricane Watch/Warning

- <u>Hurricane Watch</u>: hurricane conditions are <u>possible</u> somewhere within the watch area. Because hurricane preparedness activities become difficult once winds reach tropical storm force, the hurricane watch is issued <u>48 hours</u> in advance of the anticipated onset of tropical-storm-force winds.
- <u>Hurricane Warning</u>: hurricane conditions are <u>expected</u> somewhere within the warning area. Because hurricane preparedness activities become difficult once winds reach tropical storm force, the hurricane warning is issued <u>36</u> <u>hours</u> in advance of the anticipated onset of tropical-stormforce winds.

Definitions of Tropical Storm Watch/Warning

- <u>Tropical Storm Watch</u>: tropical storm conditions are <u>possible</u> somewhere within the watch area within the next 48 hours.
- <u>Tropical Storm Warning</u>: tropical storm conditions are <u>expected</u> somewhere within the warning area within the next 36 hours.

Issuing Warnings

(AVERAGE 24-HOUR FORECAST ERROR IS NOW ~50 MILES)

Warning Size is based on: Forecast Track Storm Size Known uncertainties in the forecasts

Orientation of the forecast track with respect to the coast plays a major role in the size of the warning area

International Coordination

World MET. ORGANIZATION - Regional Association IV Coordination

Do we need watches or warnings? Remember to consider forecast uncertainty

Better start calling Mexico, Cuba, and the National Weather Service Office in Key West...

If you run out of time to call NWS Key West, you can coordinate on the hotline call

Now type them up...

🗏 Advisory Composition Dialog - AMS al792010	
Tropical Cyclone al792010 on 2010082918	
Special Advisory Time of advisory 0000 Y HHMM	
Forecaster Initials DPB	
Advisory number 10 AWIPS bin number 4	
Time Zone 🐟 Atlantic 🐟 Eastern 💠 Central 🔲 Daylight Time	
Subtropical Surface Pressure 984 mb	
Center Accuracy 20 🗴 nm Eye Diameter 0 🗴 nm	
Forecast type	
Geography Reference 19.3N 81.2W GRAND CAYMAN	V
Geography Reference 21.6N 82.8W THE ISLE OF YOUTH	V
Public advisory frequency \sim 6 hourly \diamond 3 hourly \diamond 2 hourly	
☐ Last Advisory	
Advisory Data Edit Warning ┥	
Help OK Cancel	

Now type them up...

WATCHES AND WARNINGS

CHANGES WITH THIS ADVISORY:

None

SUMMARY OF WATCHES AND WARNINGS IN EFFECT:

A Tropical Storm Warning is in effect for...

- * The Cuban provinces of Pinar del Rio and the Isle of Youth
- * The coast of Mexico from Tulum to Cabo Catoche, including Cozumel

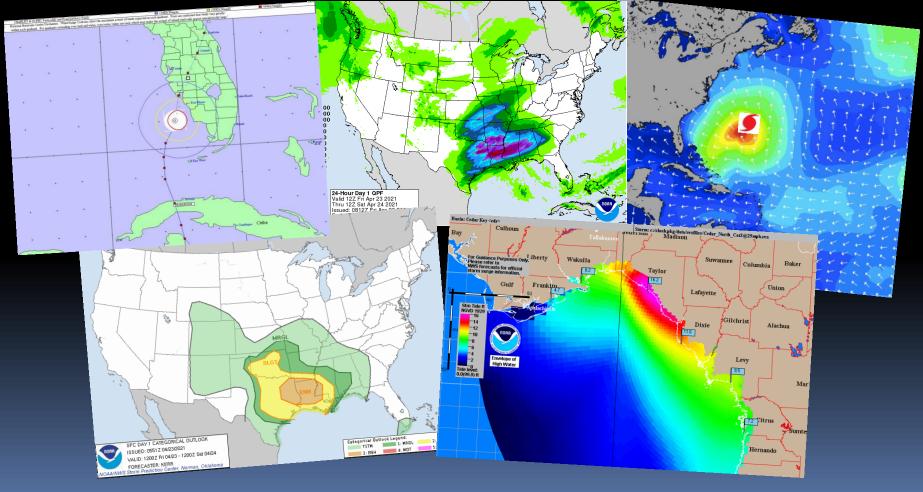
A Tropical Storm Warning means that tropical storm conditions are expected somewhere within the warning area, in this case within 24 hours.

Interests along the northeastern and central U.S. Gulf coast should monitor the progress of the Tropical Storm.


For storm information specific to your area, please monitor products issued by your national meteorological service.

20:00 UTC NWS / DOD Coordination Call

Coordinate and determine watches/ warnings



20:00 UTC NWS / DOD Coordination Call

Coordinate and determine watches/ warnings Coordinate storm surge, rainfall, tornado, rip current hazards

Advisory Composition

hurry up- you only have about 30-45 minutes to get it out

Forecast/Advisory and Wind Speed Probabilities

ZCZC MIAPWSAT4 ALL 7C7C MTATCMATA ALL TTAARR KNHC DDHHMM TTAA00 KNHC DDHHMM TROPTCAL STORM MICHAEL WIND SPEED PROBABILITIES NUMBER 5 TROPICAL STORM MICHAEL FORECAST/ADVISORY NUMBER 5 NWS NATIONAL HURRICANE CENTER MIAMI FL NWS NATIONAL HURRICANE CENTER MIAMI FL AL142018 AL142018 2100 UTC SUN OCT 07 2018 2188 HTC SHN OCT 87 2018 CHANGES IN WATCHES AND WARNINGS WITH THIS ADVISORY ... AT 2100Z THE CENTER OF TROPICAL STORM MICHAEL WAS LOCATED NEAR LATITUDE 19.2 NORTH...LONGITUDE 85.5 WEST WITH MAXIMUM SUSTAINED WINDS NEAR 45 KTS... 50 MPH ... 85 KM/H. NONE SUMMARY OF WATCHES AND WARNINGS IN EFFECT ... Z INDICATES COORDINATED UNIVERSAL TIME (GREENWICH) ATLANTIC STANDARD TIME (AST)...SUBTRACT 4 HOURS FROM Z TIME A TROPICAL STORM WARNING IS IN EFFECT FOR ... EASTERN DAYLIGHT TIME (EDT)...SUBTRACT 4 HOURS FROM Z TIME * THE CUBAN PROVINCES OF PINAR DEL RIO AND THE ISLE OF YOUTH CENTRAL DAYLIGHT TIME (CDT)...SUBTRACT 5 HOURS FROM Z TIME * THE COAST OF MEXICO FROM TULUM TO CABO CATOCHE... INCLUDING COZUMEL WIND SPEED PROBABILITY TABLE FOR SPECIFIC LOCATIONS A TROPICAL STORM WARNING MEANS THAT TROPICAL STORM CONDITIONS ARE CHANCES OF SUSTAINED (1-MINUTE AVERAGE) WIND SPEEDS OF AT LEAST EXPECTED SOMEWHERE WITHIN THE WARNING AREA... IN THIS CASE WITHIN 24 HOURS50 KT (58 MPH... 93 KM/H)... ...64 KT (74 MPH ... 119 KM/H) ... INTERESTS ALONG THE NORTHEASTERN AND CENTRAL U.S. GULF COAST SHOULD FOR LOCATIONS AND TIME PERIODS DURING THE NEXT 5 DAYS NONTTOR THE PROGRESS OF MICHAEL PROBABILITIES FOR LOCATIONS ARE GIVEN AS OP(CP) WHERE TROPICAL STORM CENTER LOCATED NEAR 19.2N 85.5W AT 07/2100Z OP IS THE PROBABILITY OF THE EVENT BEGINNING DURING POSITION ACCURATE WITHIN 20 NM AN INDIVIDUAL TIME PERIOD (ONSET PROBABILITY) (CP) IS THE PROBABILITY OF THE EVENT OCCURRING BETWEEN PRESENT MOVEMENT TOWARD THE NORTH-NORTHEAST OR 20 DEGREES AT 3 KT 18Z SUN AND THE FORECAST HOUR (CUMULATIVE PROBABILITY) ESTIMATED MINIMUM CENTRAL PRESSURE 999 MB PROBABILITIES ARE GIVEN IN PERCENT MAX SUSTAINED WINDS 45 KT WITH GUSTS TO 50 KT. X INDICATES PROBABILITIES LESS THAN 1 PERCENT 34 KT.....120NE 1805E 0SW 0NW. PROBABILITIES FOR 34 KT AND 58 KT ARE SHOWN AT A GIVEN LOCATION WHEN 12 FT SEAS, GANE GASE ASH ANH. THE 5-DAY CUMULATIVE PROBABILITY IS AT LEAST 3 PERCENT. WINDS AND SEAS VARY GREATLY IN EACH DUADRANT. RADIT IN NAUTICAL PROBABILITIES FOR 34...50...64 KT SHOWN WHEN THE 5-DAY MILES ARE THE LARGEST RADII EXPECTED ANYWHERE IN THAT QUADRANT. 64-KT CUMULATIVE PROBABILITY IS AT LEAST 1 PERCENT. REPEAT...CENTER LOCATED NEAR 19.2N 85.5W AT 07/2100Z AT 07/1800Z CENTER WAS LOCATED NEAR 19.0N 86.0W - - - WIND SPEED PROBABILITIES FOR SELECTED LOCATIONS - - - -FORECAST VALID 08/06002 20.1N 85.6W FROM FROM FROM FROM FROM FROM FROM MAX WIND 50 KT...GUSTS 60 KT. TIME 18Z SUN 06Z MON 18Z MON 06Z TUE 18Z TUE 18Z WED 18Z THU 50 KT... SONE SOSE OSW ONW. TO TO TO TO TO TO PERIODS 34 KT...120NE 1805E 05W 40NW. 062 MON 182 MON 062 TUE 182 TUE 182 WED 182 THU 182 FRI FORECAST VALID 08/18007 21.5N 85.8W FORECAST HOUR (12) (24) (36) (48) (72) (96) (120) MAX WIND 60 KT...GUSTS 75 KT. 50 KT... GONE GOSE OSW 20NW. LOCATION KT 34 KT...120NE 1505E 305W 50NW. SABLE ISLAND 34 X X(X) X(X) X(X) X(X) X(X) 4(4) FORECAST VALID 09/0600Z 23.2N 86.2W MAX WIND 70 KT...GUSTS 85 KT. YARMOUTH NS 34 X X(X) X(X) X(X) X(X) X(X) 4(4) 64 KT... 25NE 25SE 05W 20NW. 50 KT... 60NE 60SE 20SW 40NW. HYANNIS MA 34 X X(X) X(X) X(X) X(X) X(X) 8(8) 34 KT... 140NE 1405E 405W B0NW. NANTUCKET MA 34 X X(X) X(X) X(X) X(X) X(X) 11(11) FORECAST VALID 09/1800Z 25.0N 86.7W MAX WIND 80 KT...GUSTS 100 KT. MONTAUK POINT 34 X X(X) X(X) X(X) X(X) X(X) 7(7) 64 KT... 25NE 25SE 15SW 25NW. 50 KT... GONE GOSE 305W 40NW. 34 KT...130NE 1305E 605W 100NW. ISLIP NV 34 X X(X) X(X) X(X) X(X) X(X) 3(3) NWS EARLE NJ 34 X X(X) X(X) X(X) X(X) X(X) 3(3) FORECAST VALID 10/18002 29.2N 85.7W MAX WIND 85 KT...GUSTS 105 KT. S0 KT... GONE GOSE 305W 40NW. PHILADELPHIA 34 X X(X) X(X) X(X) X(X) 1(1) 2(3) 34 KT...130NE 1305E 705W 80NW. ATLANTIC CITY 34 X X(X) X(X) X(X) X(X) 1(1) 4(5) EXTENDED OUTLOOK NOTE FERORS FOR TRACK HAVE AVERAGED NEAR 150 NM ON DAY 4 AND 175 NM ON DAY 5... AND FOR INTENSITY NEAR 15 KT EACH DAY BALTIMORE MD 34 X X(X) X(X) X(X) X(X) 1(1) 3(4) OUTLOOK VALID 11/1800Z 33.7N 80.4W...INLAND DOVER DE 34 X X(X) X(X) X(X) X(X) 2(2) 4(6) MAX WIND 50 KT... GUSTS 60 KT. ANNAPOLIS MD 34 X X(X) X(X) X(X) X(X) 2(2) 4(6) OUTLOOK VALID 12/1800Z 39.0N 68.5W...POST-TROP/EXTRATROP MAX WIND 55 KT...GUSTS 65 KT. WASHINGTON DC 34 X X(X) X(X) X(X) X(X) 2(2) 4(6) REQUEST FOR 3 HOURLY SHIP REPORTS WITHIN 300 MILES OF 19.2N 85.5W CAPE HENLOPEN 34 X X(X) X(X) X(X) X(X) 3(3) 9(12) NEXT ADVISORY AT 08/0300Z OCEAN CITY MD 34 X X(X) X(X) X(X) X(X) 4(4) 13(17) OCEAN CITY MD 50 X X(X) X(X) X(X) X(X) 1(1) 3(4) \$5 OCEAN CITY MD 64 X X(X) X(X) X(X) X(X) 1(1) X(1) FORECASTER BROWN

TO

Let's create the public advisory

Example of Public Advisory

ZCZC MIATCPAT4 ALL TTAA00 KNHC DDHHMM

BULLETIN Tropical Storm Michael Advisory Number 5 NWS National Hurricane Center Miami FL AL142018 400 PM CDT Sun Oct 07 2018

...AIRCRAFT FINDS MICHAEL STRONGER... ...HEAVY RAINS EXPECTED OVER WESTERN CUBA TONIGHT AND MONDAY... ...THREAT TO THE NORTHEASTERN U.S. GULF COAST INCREASING...

SUMMARY OF 400 PM CDT...2100 UTC...INFORMATION

LOCATION...19.2N 85.5W ABOUT 130 MI...205 KM SE OF COZUMEL MEXICO ABOUT 190 MI...305 KM SSW OF THE WESTERN TIP OF CUBA MAXIMUM SUSTAINED WINDS...50 MPH...85 KM/H PRESENT MOVEMENT...NNE OR 20 DEGREES AT 3 MPH...6 KM/H MINIMUM CENTRAL PRESSURE...999 MB...29.50 INCHES

WATCHES AND WARNINGS

CHANGES WITH THIS ADVISORY:

None

SUMMARY OF WATCHES AND WARNINGS IN EFFECT:

A Tropical Storm Warning is in effect for ...

- * The Cuban provinces of Pinar del Rio and the Isle of Youth
- * The coast of Mexico from Tulum to Cabo Catoche, including Cozumel

A Tropical Storm Warning means that tropical storm conditions are expected somewhere within the warning area, in this case within 24 hours.

Interests along the northeastern and central U.S. Gulf coast should monitor the progress of Michael.

For storm information specific to your area, please monitor products issued by your national meteorological service.

Section headers added

- Storm information first

Changes to watches and warnings in the current advisory are highlighted

Bulleted summary of all watches and warnings in effect

Example of Public Advisory Format

DISCUSSION AND OUTLOOK

At 400 PM CDT (2100 UTC), the center of Tropical Storm Michael was located near latitude 19.2 North, longitude 85.5 West. Michael is moving toward the north-northeast near 3 mph (6 km/h). A northward motion with some increase in forward speed is expected over the next few days. On the forecast track, the center of Michael will move over the Yucatan Channel on Monday, and then across the eastern Gulf of Mexico late Monday through Tuesday night, and approach the northeastern Gulf coast on Wednesday.

Data from an Air Force Reserve reconnaissance aircraft indicate that maximum sustained winds have increased to near 50 mph (85 km/h) with higher gusts. Additional strengthening is expected during the next few days, and Michael is forecast to become a hurricane Monday night or Tuesday.

Tropical-storm-force winds extend outward up to 205 miles (335 km) primarily to the east of the center.

The latest minimum central pressure reported by reconnaissance aircraft is 999 mb (29.50 inches).

HAZARDS AFFECTING LAND

WIND: Tropical storm conditions are expected to first reach the coast within the warning area by this evening or tonight, making outside preparations difficult or dangerous.

RAINFALL: Michael is expected to produce total rain accumulations of 3 to 7 inches over western Cuba and 2 to 4 inches over the Yucatan Peninsula and Belize through Tuesday. Isolated maximum amounts of 12 inches are possible in western Cuba. This rainfall could lead to life-threatening flash floods and mudslides in areas of mountainous terrain.

Elsewhere, outer rain bands from Michael are expected to produce total rain accumulations of 2 to 4 inches across the Florida Keys through Tuesday.

NEXT ADVISORY

Next intermediate advisory at 700 PM CDT. Next complete advisory at 1000 PM CDT. Discussion of forecast motion and intensity and other pertinent information

Storm hazards and impacts, shown by type

Timing of next advisory

\$\$
Forecaster Brown

Create Your Discussion

ZCZC MIATCDAT4 ALL TTAA00 KNHC DDHHMM

Tropical Storm Michael Discussion Number 5 NWS National Hurricane Center Miami FL AL142018 400 PM CDT Sun Oct 07 2018

Deep convection has continued to develop over the eastern semicircle of the cyclone, and data from the reconnaissance aircraft indicate that the center has re-formed farther east, closer to the convection. The Air Force aircraft has measured peak 925-mb flight-level winds of 56 kt, and believable SFMR winds of 40-45 kt. Based on these data, the initial wind speed has been increased to 45 kt.

Due to the center reformation, the initial motion estimate is a highly uncertain 020/3 kt. The overall forecast reasoning has not changed much since the previous advisory. Although there could be some additional eastward re-formation of the center, the tropical storm is forecast to begin moving northward between a ridge over the western Atlantic and a deep-layer trough over the west-central United States. A general northward motion at around 10 kt is then expected to continue during the next 2 to 3 days. After that time, Michael should turn northeastward ahead of an approaching trough. The track guidance remains in overall agreement on this scenario, however, significant along-track (forward speed and timing) differences remain. The HWRF brings Michael onshore the northern Gulf coast within 72 hours, while the ECMWF is much slower and has Michael still offshore at day 4. The new NHC track has been shifted eastward primarily in the short term due to the more eastward initial position. The latter portion of the track forecast is again close to the consensus aids due to the large along- and cross-track guidance spread.

Michael has strengthened today despite moderate westerly shear. The shear is forecast to gradually decrease over the next couple of days while the system moves over warm waters. This should allow for steady strengthening and most of the intensity models bring Michael to hurricane strength within the next couple of days. It should also be noted that the global models also significantly deepen the storm over the next 72 hours to pressures below 970 mb. The new NHC intensity forecast calls for Michael to become a hurricane in about 36 hours when the storm reaches the southeastern Gulf of Mexico. Additional strengthening is Indicated through 72 hours when the storm is forecast to be near the northern Gulf coast, and the NHC forecast is near the higher SHIPS and HWRF models.

Key Messages:

 Michael is expected to produce heavy rainfall and flash flooding over portions of western Cuba and the northeastern Yucatan Peninsula of Mexico during the next couple of days.

 Tropical storm conditions are expected tonight over portions of western Cuba and the northeastern Yucatan Peninsula, where tropical storm warnings are in effect.

3. Michael is forecast to be a hurricane when it reaches the northeastern Gulf Coast by mid-week, and the risk of dangerous storm surge, rainfall, and wind impacts continues to increase. In addition, Michael is expected to affect portions of the Florida Gulf Coast that are especially vulnerable to storm surge, regardless of the storm's exact track or intensity. Residents in these areas should monitor the progress of this system and follow any advice given by local officials.

FORECAST POSITIONS AND MAX WINDS

INIT 07/21002 19.2N 85.5W 45 KT 50 MPH 12H 08/06002 20.1N 85.6W 50 KT 60 MPH 24H 08/18002 21.5N 85.8W 60 KT 70 MPH 36H 09/06002 23.2N 86.2W 70 KT 80 MPH 48H 09/18002 25.0N 86.7W 80 KT 90 MPH 72H 10/18002 29.2N 85.7W 85 KT 100 MPH 96H 11/18002 33.7N 80.4W 50 KT 60 MPH...INLAND 120H 12/18002 39.0N 68.5W 55 KT 65 MPH...POST-TROP/EXTRATROP

\$\$ Forecaster Brown

Objective of the Discussion

Explain the reasoning and confidence behind the analysis and the forecast

- include the prognostic reasoning
- indicate objective techniques used
- describe other meteorological decisions
- plans for watches and warnings

Key Messages

- Cover the most critical information in concise bullets
- Used to message hazards on social media

The discussion has a wide spectrum of users

- professional meteorologists
- meteorology students and professors
- the media
- emergency managersgeneral public

21:00 UTC Advisory deadline Quick Issue the Graphics- the media is calling

21:15 UTC FEMA and State Conference Calls and Media Interviews

Hurricane Liaison Team

Media Interviews

You have successfully issued your first NHC Hurricane Forecast! When accurate was it?