Tropical Cyclone Intensity Analysis and Forecasting

Dr. Mark DeMaria

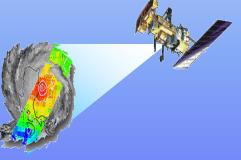
Cooperative Institute for Research in the Atmosphere Colorado State University, Fort Collins, CO

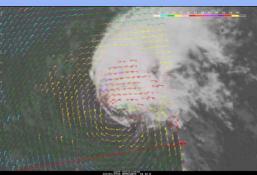
WMO RA-IV Virtual Workshop on Hurricane Forecasting and Warnings 2 March 2022

- Estimating the Current Intensity (with Exercise)
- Factors that Influence Intensity Change
- Intensity Forecasting Models
- Official Intensity Forecasts
- Intensity Forecast Exercise

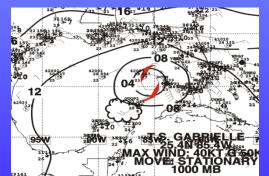
Definition of Intensity

- 1-min maximum sustained surface winds (10 m) in open exposure
- Other intensity measures
 - Minimum sea-level pressure
 - Maximum 2-min winds, 10-min winds, etc
 - Integrated wind measures (IKE, etc)




How Do We Estimate Intensity?

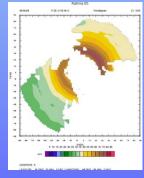
WEATHER SEERVIC

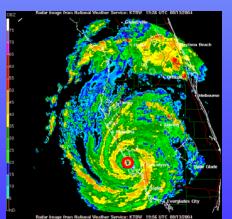

- Satellites (primary)
 - Geostationary infrared & visible images (Dvorak Technique)
 - Microwave soundings (AMSU, ATMS)
 - Scatterometer derived surface winds (ASCAT)

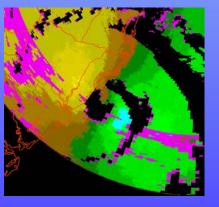
- Surface observations
 - Ships, buoys, land stations (limited)

How Do We Estimate Intensity?

Aircraft reconnaissance

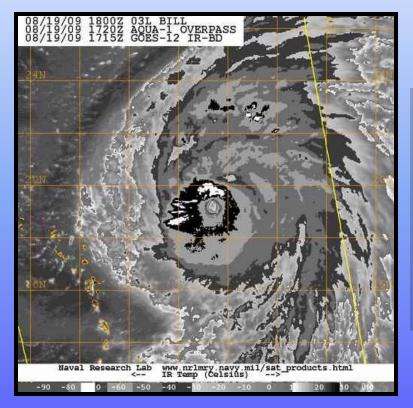

- Flight-level winds
- GPS dropsondes





Stepped-Frequency Microwave Radiometer (SFMR)

- Doppler radar
 - Land-based (WSR-88D)
 - Airborne



Example: Estimating the Current Intensity of Hurricane Bill

19 August 1800 UTC

Dvorak classification:

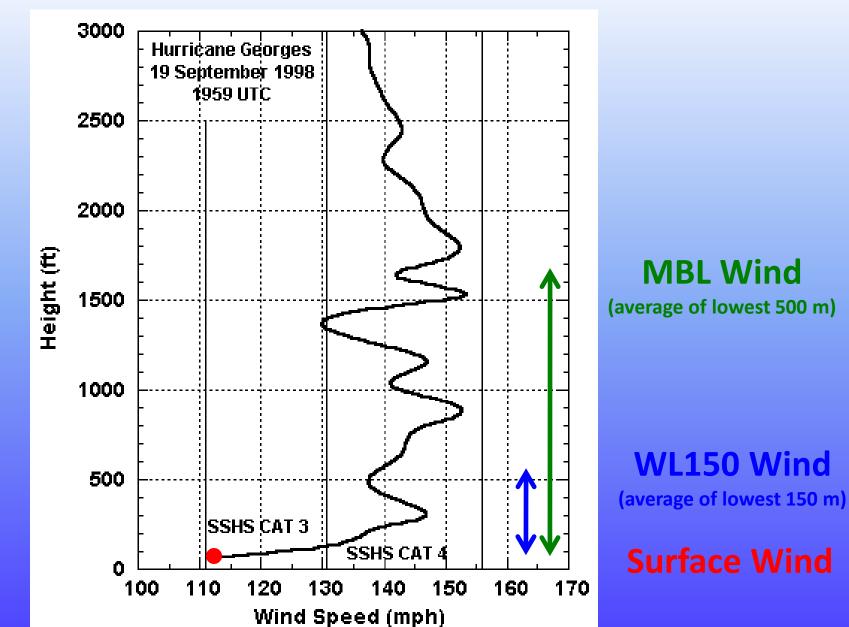
TAFB: **T6.5** = 127 kt SAB: **T6.0** = 115 kt

3-hr average ADT: **T6.4** = 125 kt

Dvorak Scale

CI	MWS	MSLP	MSLP
Number	(kt)	(Atlantic)	(NW Pacific)
1.0	25		
1.5	25		
2.0	30	1009 mb	1000 mb
2.5	35	1005 mb	997 mb
3.0	45	1000 mb	991 mb
3.5	55	994 mb	984 mb
4.0	65	987 mb	976 mb
4.5	77	979 mb	966 mb
5.0	90	970 mb	954 mb
5.5	102	960 mb	941 mb
6.0	115	948 mb	927 mb
6.5	127	935 mb	914 mb
7.0	140	921 mb	898 mb
7.5	155	906 mb	879 mb
8.0	170	890 mb	858 mb

Vortex Message

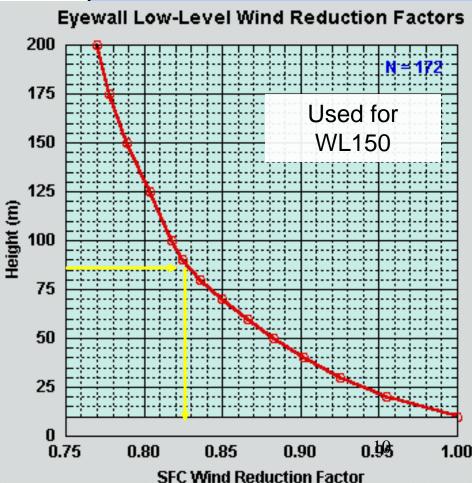


000 URNT12 KNHC 191819 CCA	A) Date/Time of center fix
VORTEX DATA MESSAGE AL032009	B) Center position
A. 19/17:57:30Z	
B. 19 deg 16 min N	C) Std surface/min height
056 deg 55 min W	D) Max sfc wind (visually observed or SFMR)
C. 700 mb 2665 m D. 102 kt SFMR surface wind	E) Bearing/range of (D) from center
E. 056 deg 24 nm $E = 126$ deg 125 ht	F) Max flt-lvl wind on inbound leg
F. 134 deg 135 kt G. 055 deg 27 nm	G) Bearing/range of (F)
H. 947 mb	H) Minimum pressure
I. 11 C / 3045 m J. 19 C / 3047 m 90% from 700 mb	
0. 19 C / 304/ m 00/01/00/00000	I) Max flt-lvl temp outside eyewall/PA
K. 6 C / NA Surface estimate =	J) Max flt-lvl temp inside eye/PA
L. OPEN SW M. C32 0.9 × 135 kt = 122 kt	K) DPT/SST at (J)
N. 12345 / 07	
0. $0.02 / 0.5 \text{ nm}$	L) Eyewall character (e.g., CLOSED)
P. AF303 0203A BILL OB 12 CC	M) Eye diameter (nm)
MAX FL WIND 135 KT NE QUAD 17:48:30Z	
;	N) Method of fix
	O) Fix accuracy (NAV/MET)
	P) Remarks (includes outbound max)
	0

Dropsonde

Dropsonde

000 UZNT13 KNHC 192344 XXAA 69237 99203 70578 07807 99955 25600 09122 00912 ///// ///// 92277 23801 10140 85016 20600 11641 70686 148// 14599 88999 77999 31313 09608 82322 61616 NOAA3 WX03A BILL4 OB 11 62626 REL 2033N05779W 232240 SPG 2042N05793W 232707 WL150 09134 0 86 DLM WND 12128 954696 MBL WND 10139 LST WND 011= XXBB 69238 99203 70578 07807 00955 25600 11941 24400 22920 23802 33741 17000 44719 16001 55695 146// 21212 00955 09122 11952 08618 22943 09640 33938 09646 4493 55916 10646 66896 11139 77749 13635 88740 14618 99695 150 31313 09608 82322 61616 NOAA3 WX03A BILL4 OB 11 62626 REL 2033N05779W 232240 SPG 2042N05793W 232707 WL150 86 DLM WND 12128 954696 MBL WND 10139 LST WND 011=


Northeast eyewall:

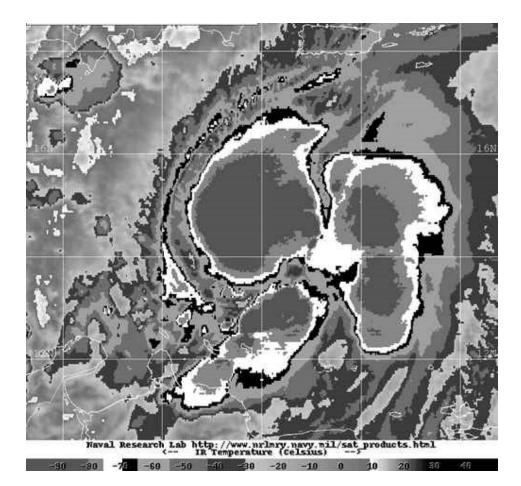
Surface = 122 kt (gust?)

MBL (lowest 500 m) = 139 × 0.8 = 111 k

WL150 (lowest 150 m) = 134 × 0.83 = 111 kt

TORR OF CHARGE

Determine the Official Intensity



es

ach c	We can only sample a part of observation has strengths and We want a value that i representative of the TC's circ	d weakness is
• OF	CL at 1800 UTC:	115 kt
• Dro	op sfc-adjusted MBL:	111 kt
• Dro	op sfc-adjusted WL150:	111 kt
• Dro	opsonde surface value:	122 kt
• Re	con sfc-adjusted flight-level wind:	122 kt
• SFI	MR surface wind	102 kt
• Ob	jective ADT:	125 kt
• Sul	bjective Dvorak:	127 / 115 kt

EXERCISE 1 Intensity Estimation

What is the initial intensity? 15/0600 UTC

Dvorak Classifications:

TAFB: T4.5 SAB: T4.5

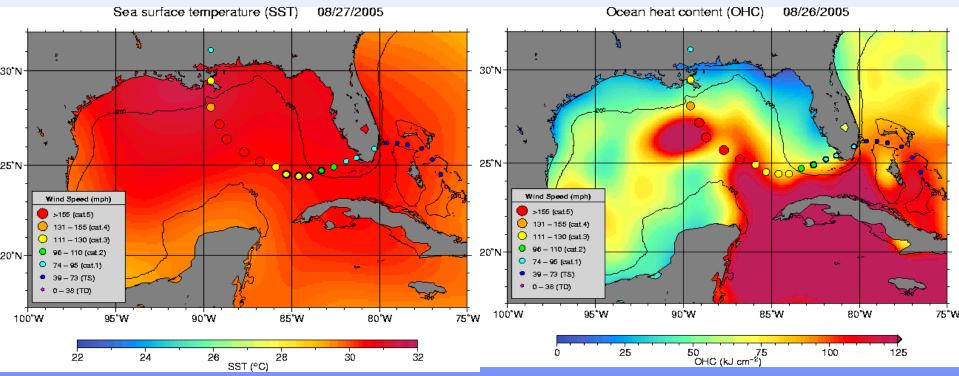
3-hr average ADT: T4.4

Dvorak Scale

CI	MWS	MSLP	MSLP
Number	(kt)	(Atlantic)	(NW Pacific)
1.0	25		
1.5	25		
2.0	30	1009 mb	1000 mb
2.5	35	1005 mb	997 mb
3.0	45	1000 mb	991 mb
3.5	55	994 mb	984 mb
4.0	65	987 mb	976 mb
4.5	77	979 mb	966 mb
5.0	90	970 mb	954 mb
5.5	102	960 mb	941 mb
6.0	115	948 mb	927 mb
6.5	127	935 mb	914 mb
7.0	140	921 mb	898 mb
7.5	155	906 mb	879 mb
8.0	170	890 mb	858 mb

What is the initial intensity given the following estimates?

Subjective Dvorak	77 kt
Objective Dvorak (ADT)	75 kt
SFMR Surface Wind	65 kt
Recon-adjusted Flight-level Wind	60 kt
Dropsonde Surface Wind	63 kt
Dropsonde Surface-adjusted MBL	50 kt
Dropsonde Surface-adjusted WL150	55 kt
Official Intensity at 0600 UTC	65 kt


Tropical Cyclone Intensity Changes

Factors Affecting

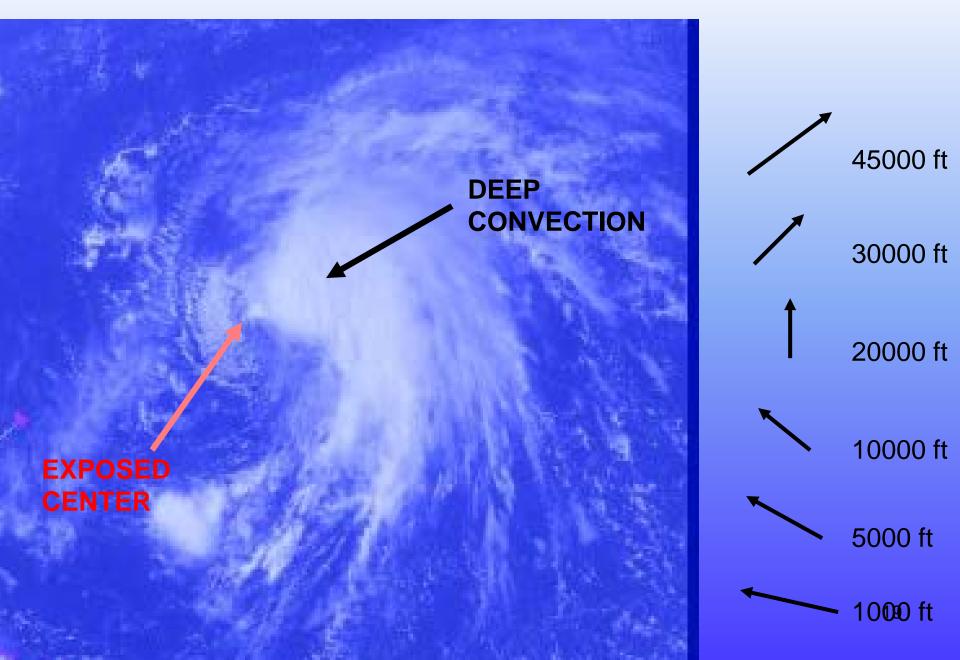
- Sea surface temperature (SST) / upper ocean heat content (OHC)
- Environmental winds, esp. vertical wind shear
- Trough interactions
- Temperature and moisture patterns in the storm environment
- Internal effects (e.g. eyewall replacement cycles)
- Interaction with land

SST vs. OHC

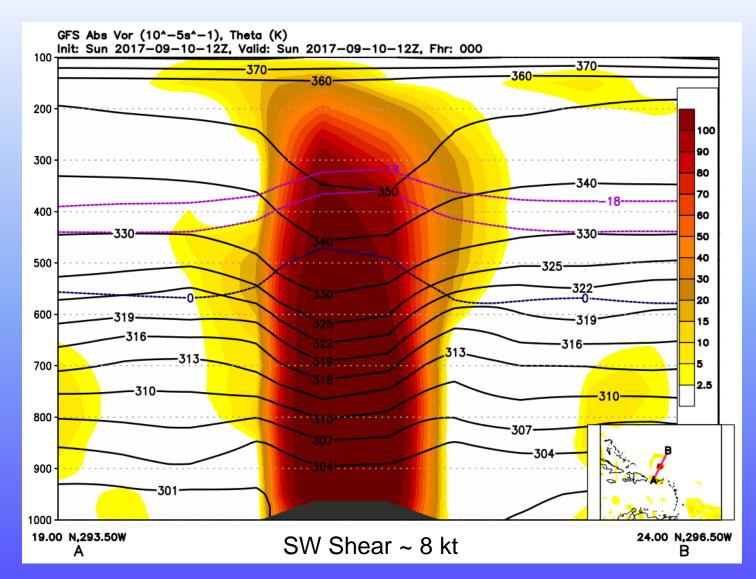
Sea Surface Temperatures

only provides a view of the very top layer of the ocean.

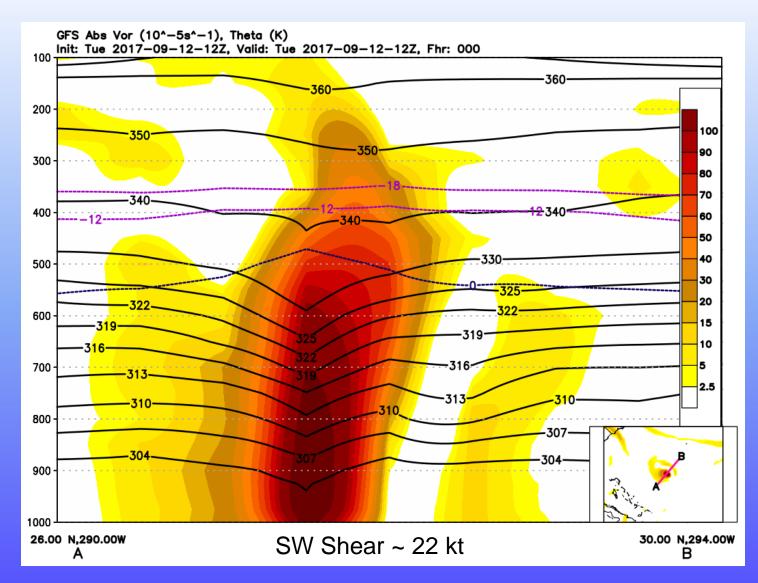
Ocean Heat Content


estimates the amount of heat available over a depth of warm water.

the greater the depth the more available heat that can be potentially converted to energy¹⁸

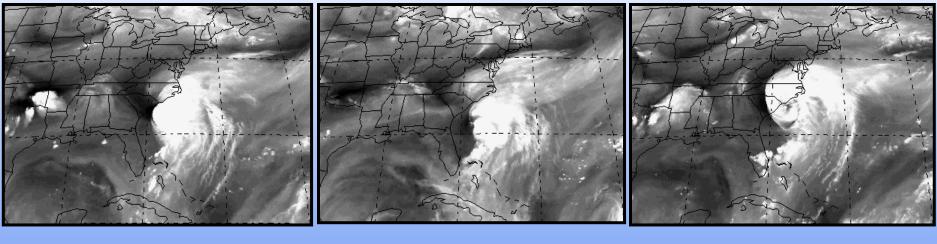

Vertical Wind Shear

Hurricane Jose 12 UTC 10 Sept 2017



Vertical cross-section of vorticity and potential temperature anomaly from the 20 GFS model for the initialization of the 1200 UTC forecast on September 10

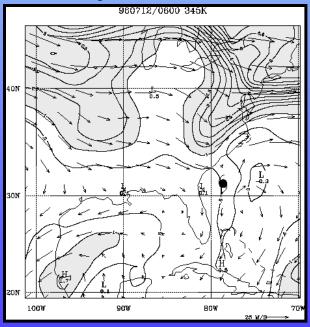
Hurricane Jose 12 UTC 12 Sept 2017

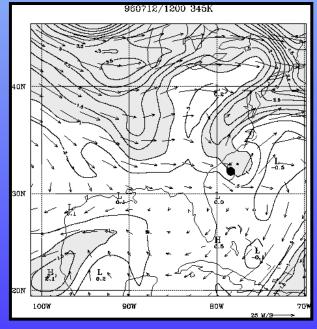


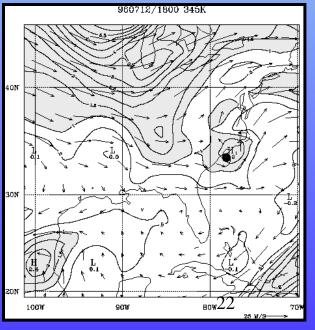
Vertical cross-section of vorticity and potential temperature anomaly from the ₂₁ GFS model for the initialization of the 1200 UTC forecast on September 10

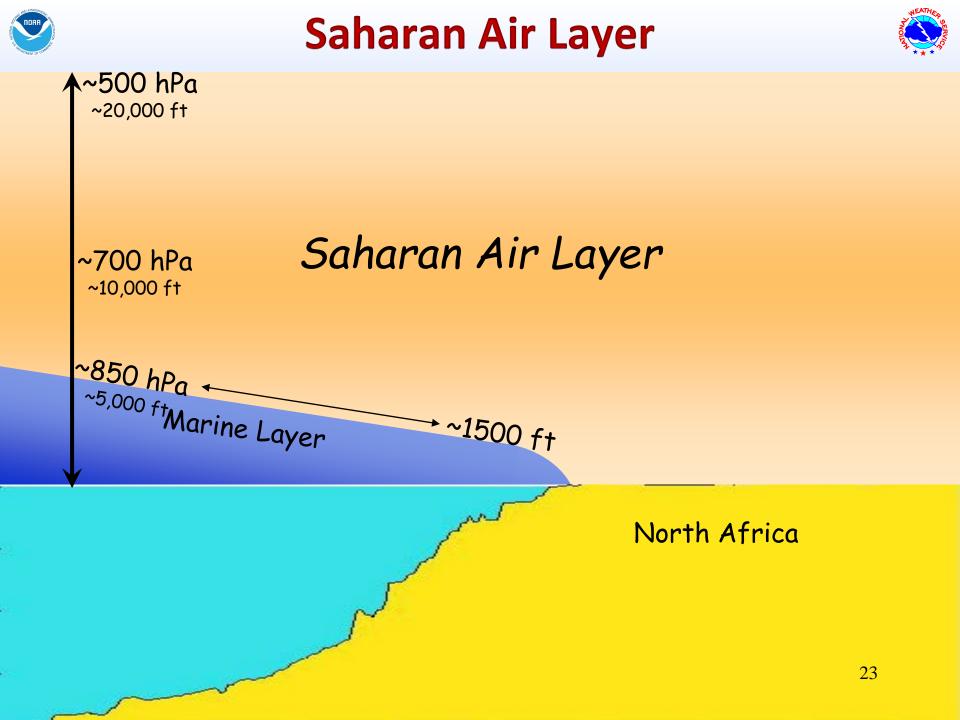
TORR OF CHARGE

Hurricane-Trough Interaction

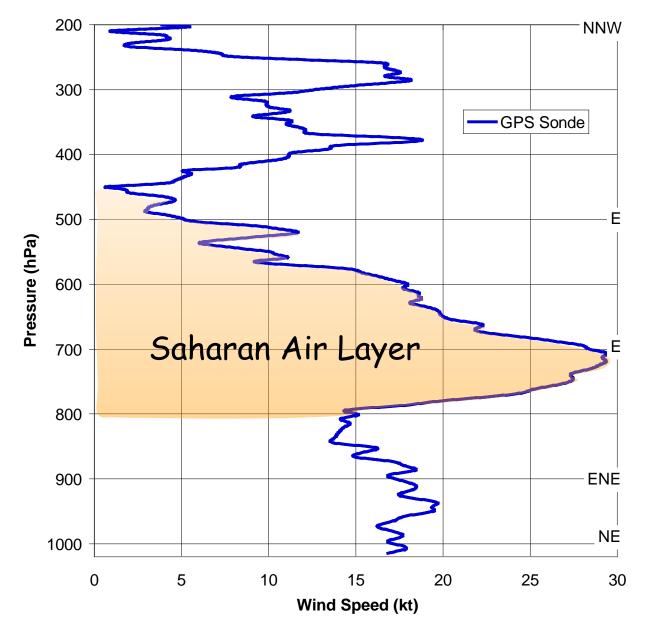

Hurricane Bertha (1996)

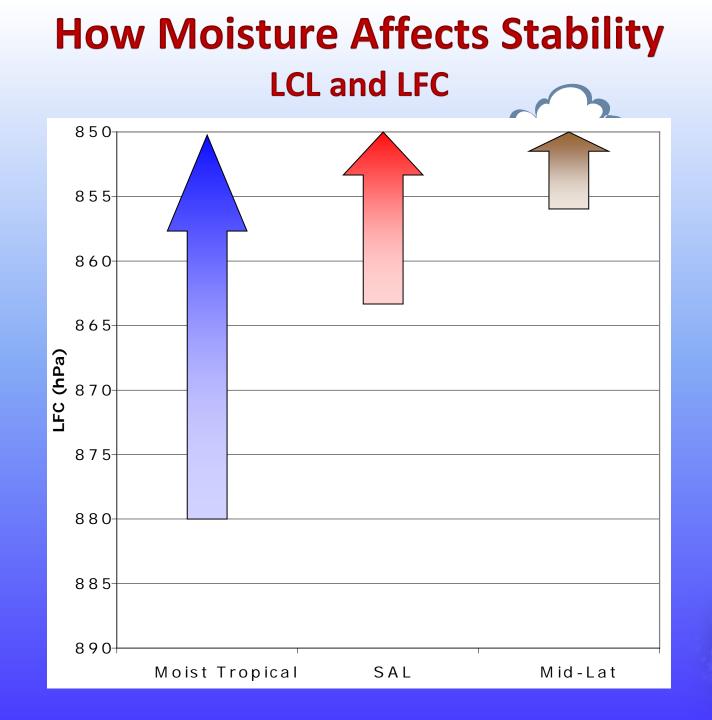



12 July 1995 06 UTC

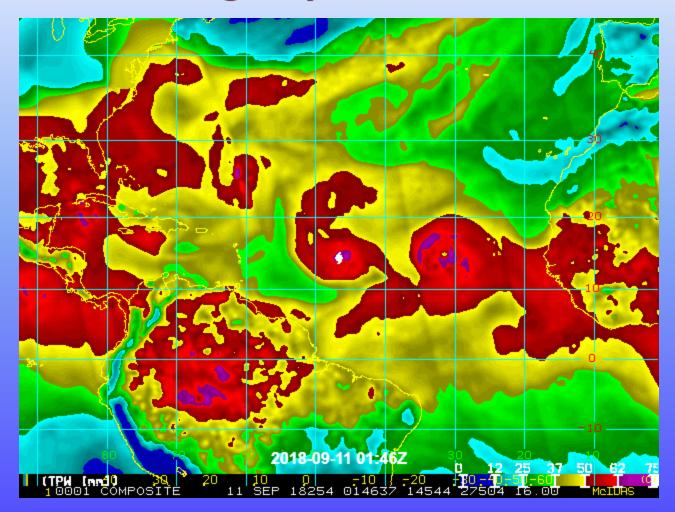

12 July 1995 12 UTC

12 July 1995 18 UTC



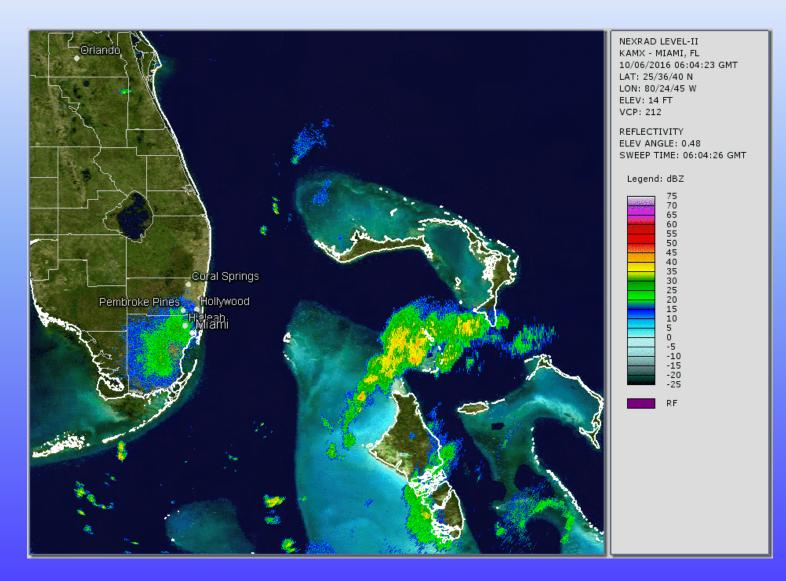


Getting Dry Air into the TC Circulation

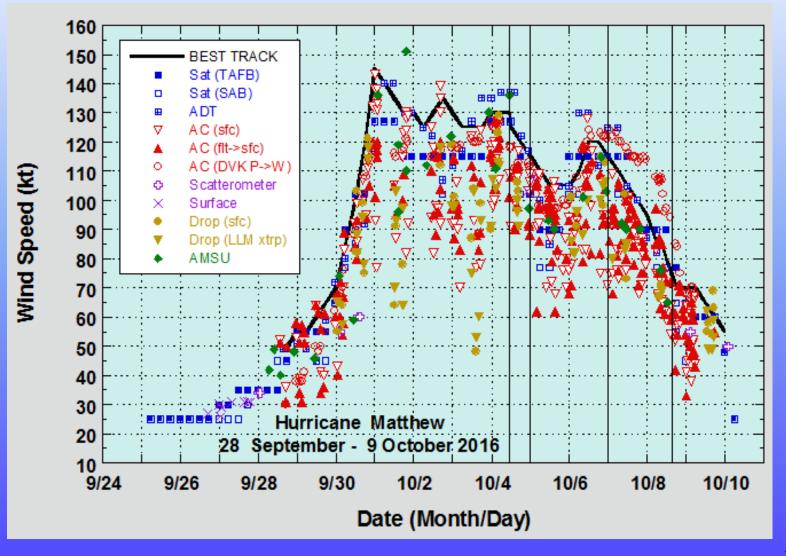


Satellite TPW Products Useful for Tracking Dry Air Intrusions

TC-centered TPW Loop for Hurricane Isaac Sept 2018


In addition to large-scale environmental influences, tropical cyclone intensity change can be caused by inner-core processes, such as eyewall replacement cycles:

In stronger hurricanes, we often see a concentric eyewall develop at a larger distance from the center than the radius of the original eyewall.


When this outer eyewall becomes dominant, some weakening usually occurs.

However, this outer eyewall could contract, in which case the hurricane would re-intensify.

Hurricane Matthew Radar Loop

Hurricane Matthew Maximum Wind

Land Interaction

- In general, winds weaken over land due to lack of latent heating and increased friction
- Strong winds move inland farther if the TC is moving faster
- Terrain can cause significant local "speed-ups" (sometimes by more than 10 – 30%) over hills, valleys, etc.
- Higher elevations in mountainous areas can have stronger winds than at sea level – common on Caribbean islands

Weather Forecast Methods¹

- Classical Statistical Models
 - Use observable parameters to statistical predict future evolution
- Numerical Weather Prediction (NWP)
 Physically based forecast models
- Statistical-Dynamical Models
 - Use NWP forecasts and other input for statistical prediction of desired variables
 - Station surface temperature, precipitation, hurricane intensity changes

Tropical Cyclone Intensity Forecast Models

• Statistical Models:

- **Decay SHIFOR** (Statistical Hurricane Intensity FORecast with inland decay).
 - Based on historical information climatology and persistence (uses CLIPER track).
 - Baseline for skill of intensity forecasts
- Trajectory CLIPER
 - Statistically estimate track and intensity tendency instead of change over fixed time
 - e.g., dV/dt instead of V(t)-V(0)

• Statistical-Dynamical Models:

- **SHIPS** and **DSHIPS** (Statistical <u>Hurricane Intensity Prediction Scheme</u>):
 - Based on climatology, persistence, and statistical relationships to current and forecast environmental conditions (with inland decay applied in DSHIPS)
- **LGEM** (Logistic Growth Equation Model):
 - Uses same inputs as SHIPS, but environmental conditions are variable over the length of the forecast (SHIPS averages over the entire forecast)
 - More sensitive to environmental changes

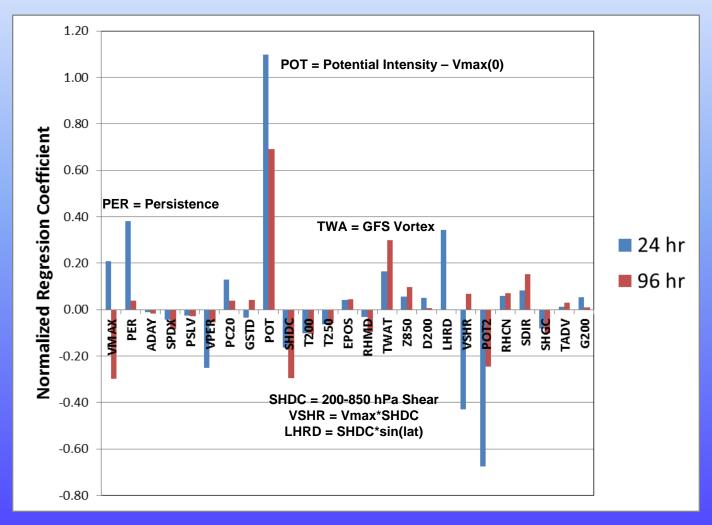
• Dynamical Models:

– HWRF, HMON, COAMPS-TC, GFS, UKMET, NOGAPS, ECMWF

Overview of the SHIPS Model

- Multiple linear regression
 - $-y = a_0 + a_1 x_1 + \dots a_N x_N$
 - y = intensity change at given forecast time

 $-(V_6-V_0), (V_{12}-V_0), \dots, (V_{120}-V_0)$

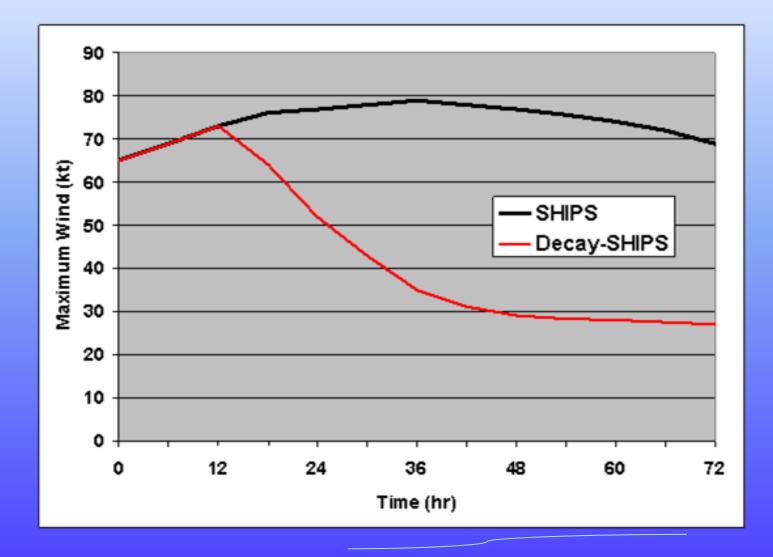

- x_i = predictors of intensity change
- a_i = regression coefficients
- Different coefficients for each forecast time
- Predictors x_i averaged over forecast period
- x,y normalized by subtracting sample mean, dividing by standard deviation

SHIPS Predictors

- 1. Climatology (days from peak)
- 2. V_0 (V_{max} at t= 0 hr)
- 3. Persistence $(V_0 V_{-12})$
- 4. V₀ * Per
- 5. Zonal storm motion
- 6. Steering layer pressure
- 7. %IR pixels $< -20^{\circ}$ C
- 8. IR pixel standard deviation
- 9. Max Potential Intensity V_0
- 10. Square of No. 9
- 11. Ocean heat content
- 12. T at 200 hPa
- 13. T at 250 hPa
- 14. RH (700-500 hPa)
- 15. θ_e of sfc parcel θ_e of env

- 16. 850-200 hPa env shear
- 17. Shear * V_0
- 18. Shear direction
- 19. Shear*sin(lat)
- 20. Shear from other levels
- 21. 0-1000 km 850 hPa vorticity
- 22. 0-1000 km 200 hPa divergence
- 23. GFS vortex tendency
- 24. Low-level T advection
- 25. GFS vortex warm core

SHIPS Regression Coefficients at 24 and 96 hr


Impact of Land

- Detect when forecast track crosses land
- Replace multiple regression prediction with

 $dV/dt = - \mu(V-V_b)$ $\mu = climatological decay rate ~ 1/10 hr^{-1}$ $V_b = background intensity over land$

 Decay rate reduced if area within 1 deg lat is partially over water

Example of Land Effect

Limitations of SHIPS

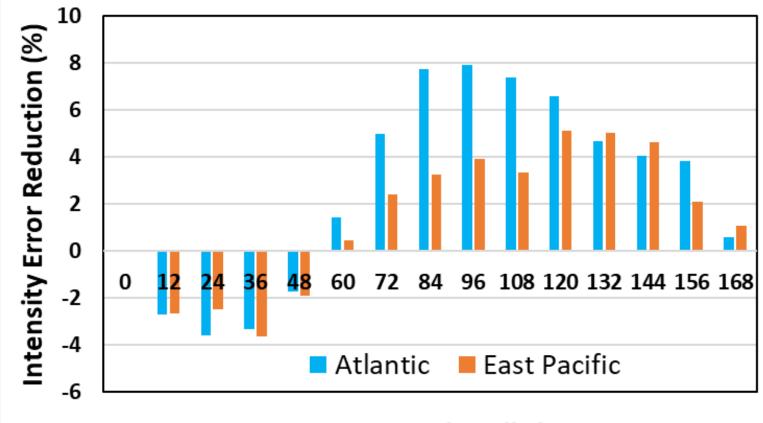
- V predictions can be negative
- Most predictors averaged over entire forecast period
 - Slow response to changing synoptic environment
- Strong cyclones that move over land and back over water can have low bias
- Logistic Growth Equation Model (LGEM) relaxes these assumptions

Operational LGEM Intensity Model

$$dV/dt = \kappa V - \beta (V/V_{mpi})^{n}V$$
(A) (B)

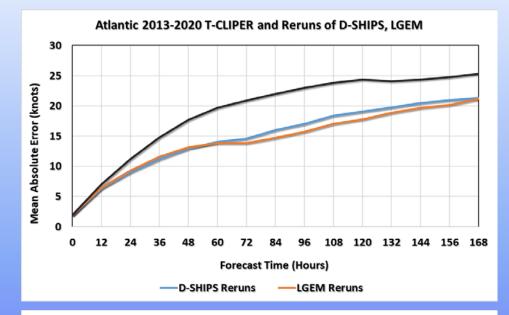
V_{mpi} = Maximum Potential Intensity estimate

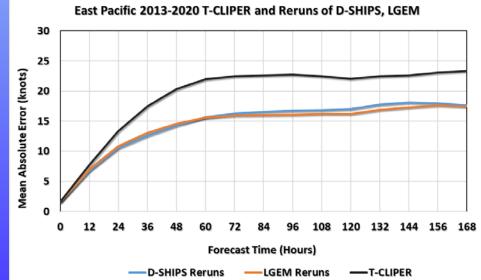
κ = Max wind growth rate (from SHIPS predictors)


 β , n = empirical constants = 1/24 hr, 2.5

Steady State Solution: $V_s = V_{mpi}(\beta/\kappa)^{1/n}$

LGEM versus SHIPS


- Advantages
 - Prediction equation bounds the solution between 0 and V_{mpi}
 - Time evolution of predictors (Shear, etc) better accounted for
 - Movement between water and land handled better because of time stepping
- Disadvantages
 - Model fitting more involved
 - Inclusion of persistence more difficult
 - SHIPS forecasts easier to interpret


LGEM Improvement over SHIPS Retrospective runs with 2021 Models 2013-2020 Sample

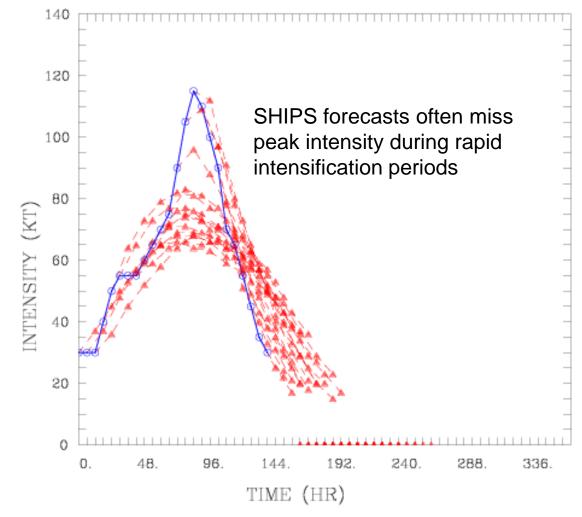
Forecast Time (hr)

SHIPS/LGEM extended from 5 to 7days starting in 2020

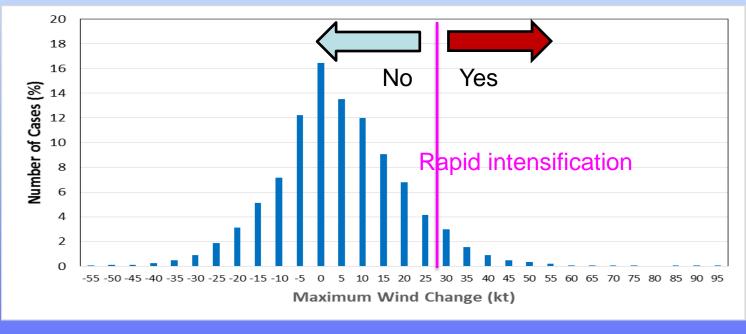
SHIPS Diagnostic File

	_		_				$-\mathbf{O}$					-		-			
				* IR S	NTIC AT DAT RIAN	A AVA	1 SHIP LABLE, 52019		OHC /	AVAILAE		* * *					
TIME (HR) V (KT) NO LAND V (KT) LAND V (KT) LGEM Storm Type T	0 80 80 80 TROP	6 83 83 83 TROP	12 87 87 86 TROP	18 90 90 89 TROP	24 94 94 92 TROP	36 97 97 99 TROP	48 102 102 105 TROP	60 102 102 105 TROP	72 105 105 104 TR0P	84 102 102 104 TR0P	96 106 106 103 TROP	108 103 62 62 TROP	120 103 40 39 TROP	132 97 31 31 TR0P	144 95 28 28 TR0P	156 91 27 27 TROP	168 90 27 27 TROP
POT. INT. (KT) ADJ. POT. INT. 200 MB T(C) -5 200 MB VXT (C) - TH_E DEV (C) 700-500 MB RH MODEL VTX (KT) 850 MB ENV VOR 200 MB DIV 700-850 TADV LAND (KM) LANU (DEG N) 2	-0.1 11 56 12 -43 36 0 397 22.8 58.0 11 45 FROM 75 VESS T -S WIT	0.1 10 56 13 -46 30 1 444 23.6 68.8 10 45 0FCI FEMP. 5 FFMF. 5	0.2 10 57 14 -45 13 24.3 69.5 10 50 50 50	0.2 10 59 14 -32 49 2 565 24.9 70.4 10 58 INITIAL RESSUR EV. 50 55 56 56 56 56 56 56 56 56 58 58 58 58 58 58 58 58 58 59 59 59 59 59 59 50 59 50 50 50 50 50 50 50 50 50 50	0.6 10 59 16 -22 25.4 71.3 9 46 . HEADI & OF S 0-200 K	TEERIN M RAD:	0.6 10 63 20 9 14 0 503 26.5 75.0 8 57 EED (DE IG LEVE	0.7 9 61 -1 -3 -1 332 26.8 76.7 7 53 G/KT): L (MB) (MEAN (MEAN	: 62 =14.5	3 (ME#)	11 0 266 29.8 163 137 -52.1 1.0 9 65 27 17 25 -1 4 27.5 80.3 4 44 CX,CY N=620)		0.9 10 62 28 11 60 2 -78 28.5 81.5 5 32	0.8 8 56 -25 23 4 -77 xx.x	16 1 252 29.6 159 131 -51.8 0.7 -2 2 63 1 -61 xx.x xxx.x 4 10	0.7 7 50 27 -4 49 6 -46 xx.x	21 2 29.6 159 129 -51.4 0.6 8 50 28 31 1 89 0 -77 *x.x *x*x*x* 7
		IND 6	IVIDUA 12	AL CONT 18		ONS TO	INTEN 60	SITY C 72	HANGE 84	96 10	08 120	132	144	156 :	168		
SAMPLE MEAN CHA SST POTENTIAL VERTICAL SHEAR VERTICAL SHEAR PERSISTENCE 200/250 MB TEME THETA_E EXCESS 700-500 MB RH MODEL VTX TENDE 850 MB ENV VORT 200 MB DIVERGEN 850-700 T ADVEC ZONAL STORM MOT STEERING LEVEL DAYS FROM CLIM. GOES PREDICTORS 0CEAN HEAT CONT RI POTENTIAL TOTAL CHANGE	MAG ADJ DIR P. ENCY TICITY ICE TION PRES PRES	-0. 0. -0. -0.	2. 3. 0. 0. -0. -1. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0	3. 4. 1. -0. 1. -1. -0. 1. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0	1. 1. -0 0. -1 -0 -0 -0 0	4. 2 1. 3 06 0. 6 11 1. 1 06 07 07 06 07 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 07	0. 0. . -1. . 1. . -1. . -1. . -1. . -1. . -0. 0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 2.	10. -2. 5. 5. -0. 0. -2. 1. -2. 1. -2. -1. -0. -0. 0. 1. -0. 1. -2. 25.	11. -3. 7. 4. -0. -2. 1. -2. 1. -2. -1. -0. -0. -0. -0. 1. -0. 0. 1. -2. 22.	-4 8. -0 -0 -2 0 -15. 1 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -0 -2 -3 -1 -0 -2 -3 -1 -0 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -2 -1 -0 -2 -1 -1 -0 -2 -1 -0 -2 -1 -0 -2 -1 -0 -2 -1 -0 -2 -0 -0 -2 -0 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7. 9. 3. 0. 0. 4. 0. 4. 0. 4. - 0. 0. 1. 0. 0. 1. 0. 0. 1. - 0. 4. 4. - 0. 4. 4. 0. 4. 4. 0. 4. 4. 0. 4. 4. 0. 4. 4. 0. 4. 4. 0. 4. 4. 0. 4. 1. 4. 0. 4. 1. 1. 1. 4. 1. 0. 1. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 0. 1. 0. 	-2.	15. -10. 9. 2. 1. -4. -0. -4. 10. -3. 0. -1. -0. -1. -0. -1. -0. -1. 1. <tr td=""></tr>	16. 11. 8. 1. -0. -5. -0. -3. -0. -0. -0. -0. -0. -0. -0. -0		

Available in real time from ftp://ftp.nhc.noaa.gov/atcf/stext


SHIPS Diagnostic File

				* ATLA * IR S * DOR	SAT DAT	TA AVAI		,		FORECA AVAILAB 90 UTC		* * *						
TIME (HR)	0	6	12	18	24	36	48	60	72	84	96	108	120	132	144	156	168	
V (KT) NO LAND	80	83	87	90	94	97	102	102	105	102	106	103	103	97	95	91	90	
V (KT) LAND	80	83	87	90	94	97	102	102	105	102	106	62	40	31	28	27	27	
V (KT) LGEM	80 TR0P	83 TR0P	86 TR0P	89 TROP	92 TROP	99 TROP	105 TR0P	105 TR0P	104 TR0P	104 TR0P	103 TR0P	62 TR0P	39 TROP	31 TROP	28 TR0P	27 TR0P	27 TR0P	
Storm Type	IRUP	IKUP	IRUP	TRUP	IKUP	IRUP	IRUP	IKUP	TRUP	TRUP	IKUP	IRUP	TRUP	TRUP	TRUP	TRUP	IRUP	
SHEAR (KT)	9	8	4	3	8	12	12	15	11	11	11	16	15	16	16	14	21	Mean=15 kt
SHEAR ADJ (KT)	-1	-2	-1	-1	-4	-1	-5	-2	-4	0	0	0	-2	2	1	3	2	<mark>σ=10 kt</mark>
SHEAR DTR	200	232	250	243	275	334	299	320	290	293	266	289	267	279	252	255	212	
SST (C)	29.4	29.4	29.3	29.4	29.4	29.3	29.3	29.5	29.8	29.9	29.8	29.9	29.7	29.8	29.6	29.4	29.6	
POT. INT. (KT)	159	159	157	158	158	156	156	159	164	166	163	165	161	164	159	156	159	
ADJ. POT. INT.	147	144	141	142	141	138	136	138	141	141	137	138	135	137	131	127	129	
200 MB T (C) 200 MB VXT (C)	-53.3	-53.3 0.1	-53.4	-53.1 0.2		-53.2 0.6	-52.8 0.6	-52.9 0.7	-52.6 1.0	-52.5 0.9	-52.1 1.0	-52.0 1.3	-51./	-52.1 0.8	-51.8 0.7	-52.2 0.7	-51.4 0.6	
TH E DEV (C)	-0.1	10	10	0.2 10			10		1.0 9	0.9 9	1.0	1.3	10	0.0	10		0.0	
700-500 MB RH	56	56	57	59	59	58	63	61	68	64	65	60	62	56	55	50	50	Mean=55%
MODEL VTX (KT)	12	13	14	14	16	17	20	21	23	22	27	26	28	26	27	27	28	<mark>σ=10%</mark>
850 MB ENV VOR	-43	-46	-45	-32	-22	-24	9	-1	23	-2	17	- 15	11	-25	-2		31	
200 MB DIV	36	30	14	49	30	13	14	-3	25	-3	25	10	60	23	63	49	89	
700-850 TADV	0	1	0	2		-6	0	-1	-1	-1	-1	-1	2	- 4	1	6	0	
LAND (KM)	397	444	513	565	622	617	503	332	184	84	4	-46	-78	-77	-61	-46	-77	
LA (DEG N)	22.8	23.6	24.3	24.9	25.4	26.1	26.5	26.8	27.0	27.2	27.5	27.9					xx.x	
LONG(DEG W)	68.0	68.8	69.5	70.4		73.2		76.7	78.2		80.3	81.0			xxx.x	xxx.x		
STM SPEED (KT)	11	10	10	10	9	9	8	7	6	5	4	4	5	5	4	4	4	
HEAT CONTENT	45	45	50	58	46	50	57	53	53	56	44	40	32	15	10	16		
FORECAST TRAC					L HEADI				220/ 1	14	CX,CY	·· 1	/ 10				Mean	=30kJ/cm ²
T-12 MAX WIND		UPCI			RE OF S						AN=620)		10				$\sigma=1$	0kJ/cm ²
GOES IR BRIGH		TEMP			0-200 K						IV-020 /							
% GOES IN BRIGH					0-200 K 0-200 K				N=65.0)									
PRELIM RI PRO							. 00.0											


Available in real time from ftp://ftp.nhc.noaa.gov/atcf/stext

SHIPS Forecasts For East Pacific Hurricane Georgette (2016)

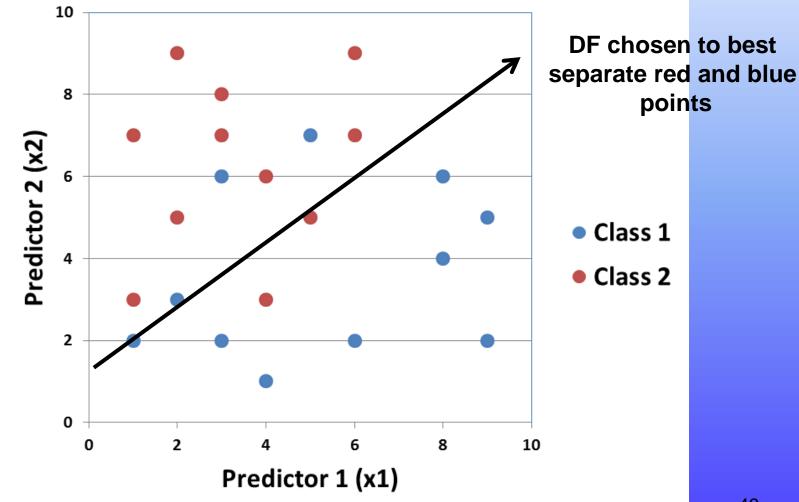
24 hr Intensity Change PDF

Atlantic Over-Water Cases

Mean: 4.3 kt Std Dev: 15 kt Range -55 kt to +95 kt 4th percentile: -25 kt 96th percentile: +30 kt

The Rapid Intensification Index

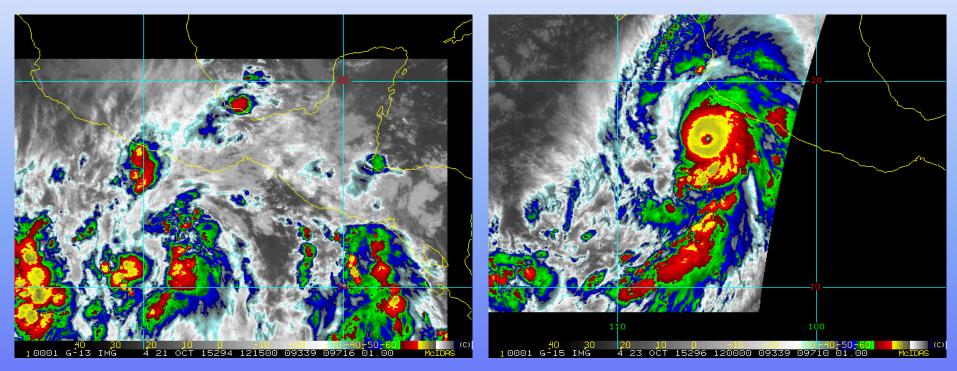
- Define RI as 30 kt or greater intensity increase in 24 hr
- Find subset of SHIPS predictors that separate RI and non-RI cases
- Use training sample to convert discriminant function value to a probability of RI
- AL and EP/CP versions include more thresholds (25, 30, 35, 40 kt changes, etc)_


Linear Discriminant Analysis

- 2 class example
 - Objectively determine which of two classes a data sample belongs to
 - Rapid intensifier or non-rapid intensifier
 - Predictors for each data sample provide input to the classification
- Discriminant function (DF) linearly weights the inputs

 $DF = a_0 + a_1 x_1 + \dots a_N x_N$

 Weights chosen to maximize separation of the classes


Graphical Interpretation of the Discriminant Function

RII Discriminators

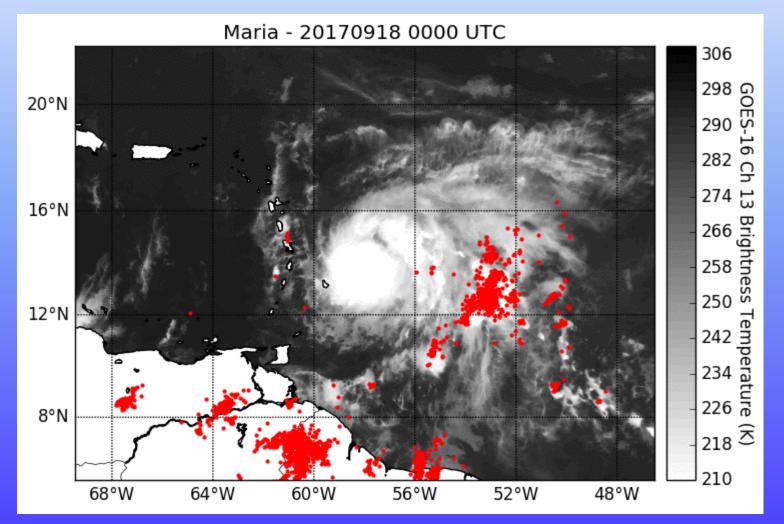
- 1. Previous 12 h max wind change (persistence)
- 2. Current intensity
- 3. Maximum Potential Intensity Current intensity
- 4. Oceanic Heat Content
- 5. 200-850 hPa shear magnitude (0-500 km)
- 6. 200 hPa divergence (0-1000 km)
- 7. Mid-level dry air parameter
- 8. TPW < 45 mm in upshear direction
- 9. IR imagery cold pixel variable
- 10. Azimuthal standard deviation of IR brightness temperature

PATRICIA INTENSIFIED FROM 40 KT TO 185 KT IN 48 HOURS!

21 OCT 2015 12 UTC

23 OCT 2015 12 UTC

RI Guidance

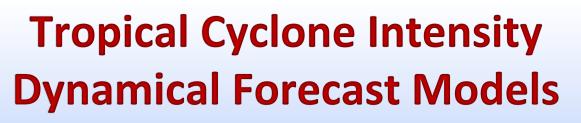

Hurricane Patricia (2015 - East Pacific)

* EAST PACIFIC 2021 SHIPS INTENSITY FORECAST * * IR SAT DATA AVAILABLE, OHC AVAILABLE * * PATRICIA EP202015 10/22/15 06 UTC *																	
TIME (HR) V (KT) NO LAND V (KT) LAND V (KT) LGEM	0 70 70 70	6 82 82 83	12 94 94 95	18 105 105 106	24 113 113 115	36 124 124 122	48 117 95 91	60 89 52 50	72 70 35 34	84 59 29 N/A	96 50 28 N/A	108 44 27 N/A	120 41 27 N/A	132 38 27 N/A	144 35 27 N/A	156 32 27 N/A	168 28 27 N/A
Storm Type	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
SHEAR (KT)	2	1	6	11	11	12	24	31	46	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
SHEAR ADJ (KT)	0	0	-3	-5	-5	-2	4	1	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
SHEAR DIR SST (C)	42 <u>30.3</u>	229 <u>30.4</u>	228 30.5	197 <u>30.3</u>	178 <u>30.1</u>	189 30.5	195 30.6	219 28.5	232 28.6	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A

** 2021 E. Pacific RI INDEX EP202015 PATRICIA 10/22/15 06 UTC **
(SHIPS-RII PREDICTOR TABLE for 30 KT OR MORE MAXIMUM WIND INCREASE IN NEXT 24-h)

Predictor	Value	RI Predi	cto	r Range	Scaled Value(0-	1) % Contribution
POT = MPI-VMAX (KT) :	98.7			149.3	0.53	13.6
12 HR PERSISTENCE (KT) :	25.0	-22.0	to	44.0	0.71	20.8
D200 (10**7s-1) :	116.8	-33.0	to	159.5	0.78	18.5
850-200 MB SHEAR (KT) :		19.6	to	1.3	0.73	16.6
MAXIMUM WIND (KT) :	70.0	22.5	to	132.0	0.83	14.9
STD DEV OF IR BR TEMP :	6.3	37.8	to	2.1	0.88	14.2
	120.8	800.8	to	-82.5	0.77	-13.8
HEAT CONTENT (KJ/CM2) :		2.7	to	106.7	0.57	7.6
%area of TPW <45 mm upshear :			to	0.0	1.00	5.0
2nd PC OF IR BR TEMP :	-0.3	2.2	to	-2.3	0.55	1.6
			-			
SHIPS Prob RI for 20kt/ 12hr						cal mean (6.3%)
SHIPS Prob RI for 25kt/ 24hr						cal mean (12.5%)
SHIPS Prob RI for 30kt/ 24hr			s is		imes climatologi	
SHIPS Prob RI for 35kt/ 24hr			s is		imes climatologi	
SHIPS Prob RI for 40kt/ 24hr			s is		imes climatologi	
SHIPS Prob RI for 45kt/ 36hr			s is		imes climatologi	
SHIPS Prob RI for 55kt/ 48hr			s is		imes climatologi	
SHIPS Prob RI for 65kt/ 72hr	RI thresh	10ld= 13%	s is	2.7 t	imes climatologi	cal mean (4.7%)

GOES-16 Imagery and Lightning Locations



Using GLM to Improve the RII

- Experimental tests using lightning in RII show improved skill
- Plan to run real-time experimental version this season

RII PREDICTORSPOT: SST PotentialSHDC: ShearD200: DivergencePER: PersistencePC30: % IR pixels < -30°C</td>TBSTD0: GOES IR brightness tempstandard deviationOHC: Ocean heat contentRHLO: Relative humidityLM02: Inner-core lightningLM24: Outer-rainband lightning

- Regional Models: HWRF, HMON, COAMPS-TC
- Global Models: NCEP GFS, UKMET, ECMWF, Navy NAVGEM, Canadian
- These models have forecast errors due to...
 - sparse observations
 - inadequate resolution (need to go down to a few km grid spacing; the HMON and HWRF, our highest-resolution operational hurricane models, are currently 1-2 km).
 - incomplete understanding and simulation of basic physics of intensity change.
 - problems with representation of shear.
- Steady improvements over past few years to due improved resolution, physics and data assimilation

- ICON Consensus that is computed by averaging the forecast intensities from Decay-SHIPS, LGEM, HWRF, HMON, COAMPS-TC.
- IVCN Consensus that requires at least 2 of Decay-SHIPS, LGEM, HWRF, HMON and COAMPS-TC.
- FSSE (Florida State Superensemble) Consensus that uses dynamical models and the previous NHC forecast. The FSSE learns from past performances of its member models in a "training phase", then accounts for the model biases.
- HCCA (HFIP Corrected Consensus Approach) FSSE approach adapted to NHC operations

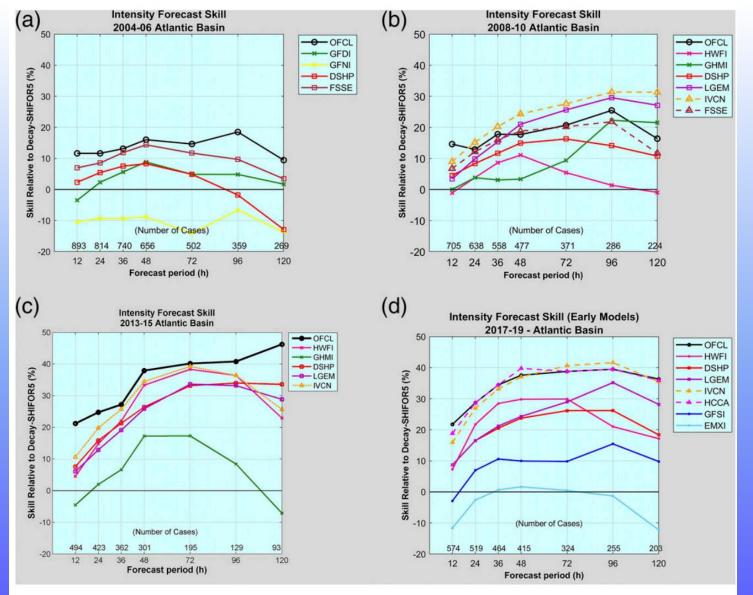
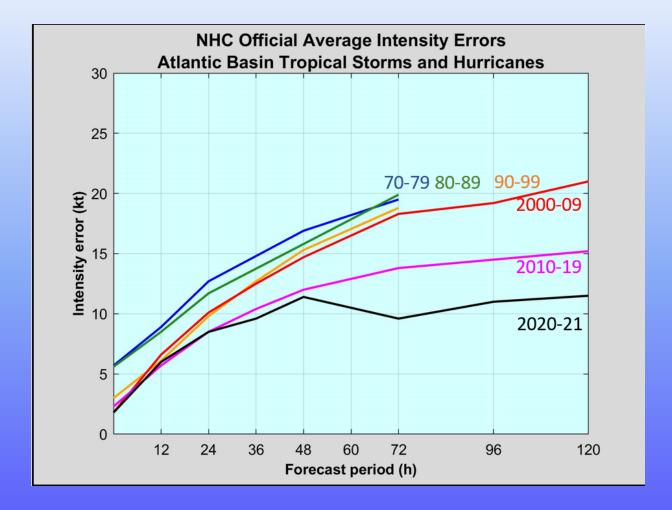


FIG. 5. NHC and intensity model skill for (a) 2004–06, (b) 2008–10, (c) 2013–15, and (d) 2017–19. NHC skill is shown in black, and the various models are depicted in the other colors. The number of verifying events at each forecast lead time is shown above the *x* axis. Models not previously defined: NHC forecasts (OFCL), HWRF interpolated forecasts (HWFI), GFDL interpolated forecasts (GFDI), GFDL run off the U.S. Navy Global Atmospheric Prediction System (GFNI), Florida State Super Ensemble (FSSE), GFS interpolated forecasts (GFSI), and ECMWF interpolated forecasts (EMXI).

NHC Official Intensity Forecast



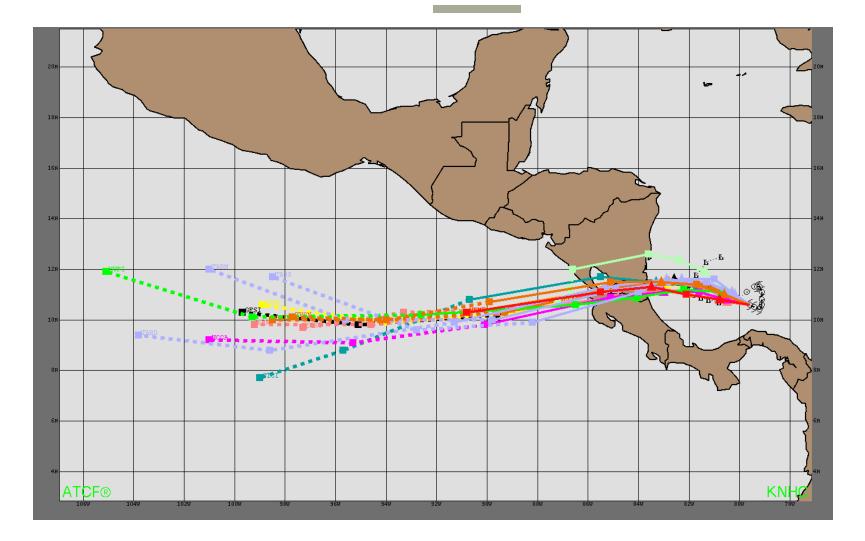
- Based on statistical guidance from SHIPS and LGEM , qualitative guidance from dynamical models and consensus.
- HWRF and COAMPS TC more skillful last few years
- Persistence is used quite a bit!
- Obvious signs in the environment, i.e. cooler waters, increasing upper-level winds, are taken into account.
- Generally corresponds to what is *normal* for a storm in any particular situation (e.g. the standard Dvorak development rate).
- Tends to be conservative; extreme events are almost never forecast.
- For forecasts 48 hr and beyond, the average error is roughly 1 SSHWS Category (10-15 knots).

Atlantic Intensity Error Trends

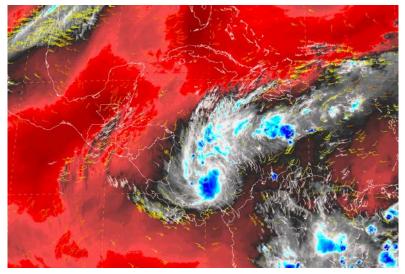
Only small improvements between 1970-2009, but errors have decreased more sharply this decade.

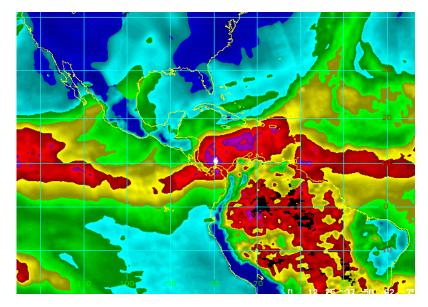
Figure from J. Cangialosi (2022)

Concluding Remarks

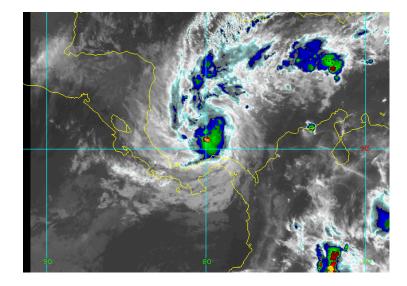


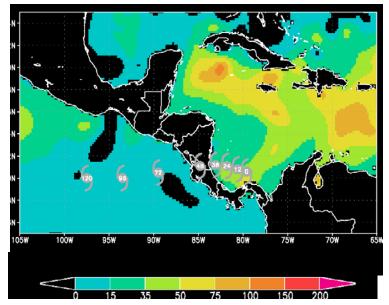
- There is less skill for intensity forecasting than track forecasting but considerable improvement in last decade
- Current guidance is provided mainly by HWRF, DSHIPS, LGEM, IVCN and more recently, COAMPS-TC, HMON, GFS, FSSE and HCCA
 - Dynamical models more skillful for basin-wide intensity forecasts
 - Statistical methods more generally skillful for identifying RI cases
- We still have significant difficulty in forecasting rapidly intensifying and rapidly weakening storms.
- The main hope for the future lies in improved dynamical models, coupled with enhanced observations and understanding of the hurricane's inner core Hurricane Forecast Improvement Project (HFIP)
- Consensus approaches should also lead to future improvements
- GOES-16/-17 is providing new imagery and lightning data for dynamical ₆₀ and statistical-dynamical intensity models


EXERCISE 2 Intensity Forecast


Part 2: 36-Hour Forecast Intensity

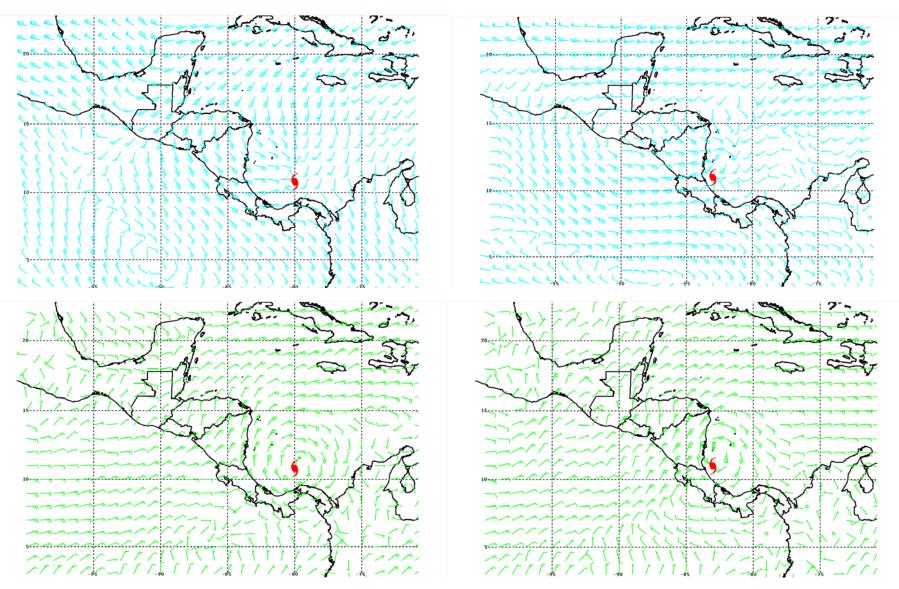
Model Track Guidance


Water Vapor Imagery and Mid- to Upper Level Winds



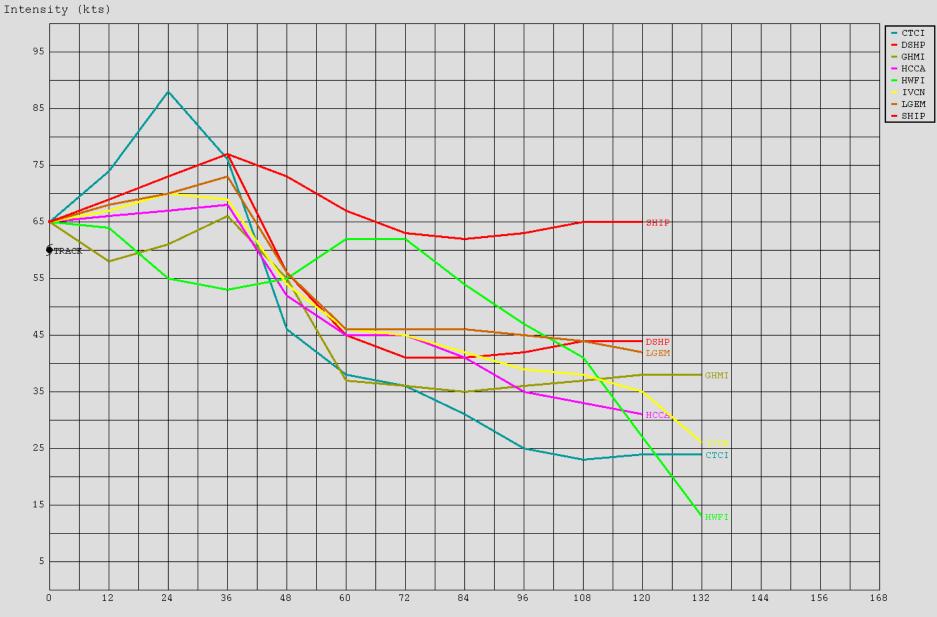
Total Precipitable Water

Infrared Imagery (Window Channel)



Oceanic Heat Content

200 hPa Wind 6 hr GFS forecast


200 hPa Wind 42 hr GFS forecast

850 hPa Wind 6 hr GFS forecast

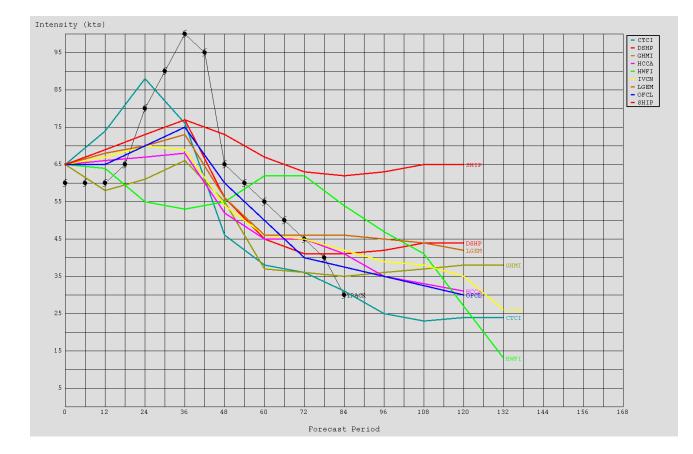
850 hPa Wind 42 hr GFS forecast

Intensity Model Guidance

Forecast Period

SHIPS/LGEM Model Guidance

	*	· ATLAN	ITIC	SHIF	S INTE	NSTTV	FORECA	ST		*			
			T DATA				OHC AV		.E	*			
TIME (HR) V (KT) NO LAND V (KT) LAND V (KT) LGEM Storm Type	0 65 65 TROP	6 67 67 67 TROP	12 69 69 68 TROP	18 71 71 69 TROP	24 73 73 70 TROP	36 77 77 73 TROP	48 73 56 TROP	60 67 45 46 TROP	72 63 41 46 TROP	84 62 41 46 TROP	96 63 42 45 TROP	108 65 44 44 TROP	120 65 44 42 TROP
	1101	1101	1101	1101	11.01	1101	inor	1101	11101	1101	1101	Inor	11.01
SHEAR (KT) SHEAR ADJ (KT) SHEAR DIR SST (C) POT. INT. (KT) ADJ. POT. INT. 200 MB T (C) 200 MB VXT (C) TH_E DEV (C) 700-500 MB RH MODEL VTX (KT) 850 MB ENV VOR 200 MB DIV 700-850 TADV LAND (KM) LAT (DEG N) LONG(DEG W) STM SPEED (KT) HEAT CONTENT	$ \begin{array}{r} 14\\ 0\\ 136\\ 29.0\\ 148\\ 141\\ -52.9\\ -0.2\\ 63\\ 17\\ 51\\ 68\\ 0\\ 111\\ 10.6\\ 79.6\\ 3\\ 44\end{array} $	-0.2 5	$12 \\ -3 \\ 151 \\ 29.0 \\ 149 \\ 144 \\ -53.2 \\ -0.1 \\ 67 \\ 18 \\ 64 \\ 109 \\ 0 \\ 163 \\ 10.9 \\ 80.2 \\ 5 \\ 37 \\ 10 \\ 5 \\ 37 \\ 10 \\ 5 \\ 37 \\ 10 \\ 5 \\ 37 \\ 10 \\ 5 \\ 37 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	$ \begin{array}{r} 11 \\ -4 \\ 123 \\ 29.0 \\ 150 \\ 147 \\ -52.6 \\ 0.0 \\ 5 \\ 69 \\ 18 \\ 66 \\ 104 \\ 0 \\ 212 \\ 11.0 \\ 80.8 \\ 6 \\ 35 \\ \end{array} $	$12 \\ -4 \\ 116 \\ 29.1 \\ 152 \\ 149 \\ -52.8 \\ 0.1 \\ 5 \\ 70 \\ 17 \\ 62 \\ 61 \\ 196 \\ 11.1 \\ 81.5 \\ 7 \\ 35 \\ 35 \\ 120 \\ 110 \\ 100 \\$	$11 \\ -2 \\ 119 \\ 29.2 \\ 154 \\ 151 \\ -53.3 \\ 0.1 \\ 4 \\ 74 \\ 20 \\ 62 \\ 64 \\ 11.1 \\ 82.9 \\ 7 \\ 31$	$ \begin{array}{r} 16\\ -1\\ 133\\ 28.7\\ 147\\ 146\\ -53.0\\ 0.1\\ 5\\ 75\\ 15\\ 61\\ 61\\ -55\\ 11.1\\ 84.4\\ 9\\ 24\end{array} $	$\begin{array}{c} 22\\ -1\\ 135\\ 28.1\\ 139\\ 140\\ -53.6\\ 0.2\\ 4\\ 74\\ 11\\ 46\\ 45\\ 10\\ 83\\ 10.8\\ 86.6\\ 12\\ 3\end{array}$	25 0 125 28.1 138 139 -53.3 0.3 71 8 48 61 9 311 10.3 89.1 11 12	25 125 28.7 146 144 -54.1 0.1 45 10 28 65 10 28 65 10 412 10.0 91.1 7 4	20 4 115 29.1 152 -53.8 0.0 4 67 11 80 80 80 80 80 9.9 92.2 86	20 8 108 29.1 154 160 -54.4 0.0 4 60 11 -6 77 559 9.8 94.3 12 7	24 7 89 28.6 147 53 -54.1 0.0 58 10 -7 65 9.5 97.1 14 3
FORECAST TRACK FROM OFCI INITIAL HEADING/SPEED (DEG/KT):290/ 2 CX,CY: -1/ 1 T-12 MAX WIND: 60 PRESSURE OF STEERING LEVEL (MB): 591 (MEAN=618) GOES IR BRIGHTNESS TEMP. STD DEV. 50-200 KM RAD: 10.1 (MEAN=14.5) % GOES IR PIXELS WITH T < -20 C 50-200 KM RAD: 74.0 (MEAN=65.0) PRELIM RI PROB (DV .GE. 30 KT IN 24 HR): 10.4													


Rapid Intensification Index

** ATLANTIC RI INDEX (SHIPS-RII PREDICTOR TABLE for 30 KT OR MORE MAXIMUM WIND INCREASE IN NEXT 24-h)

Predictor 12 HR PERSISTENCE (KT): 850-200 MB SHEAR (KT): HEAT CONTENT (KJ/cm2): STD DEV OF IR BR TEMP: 2nd PC OF IR BR TEMP: MAXIMUM WIND (kt): D200 (10**7s-1): POT = MPI-VMAX (KT): % AREA WITH TPW <45 mm: BL DRY-AIR FLUX (w/m2):	38.4 10.1 0.1 65.0 85.6	-49.5 28.8 0.0 37.5 2.8 22.5 -23.1 28.4	to 33.0 to 2.9 to 155.1 to 2.9 to -3.1 to 121.0 to 181.5 to 139.1 to 0.0	0.66 0.63 0.25 0.79 0.45 0.89 0.53 0.46 1.00	<pre>1) % Contribution 6.3 2.7 0.8 3.3 1.9 1.3 0.9 1.1 1.0 0.0</pre>
SHIPS Prob RI for 20kt/ SHIPS Prob RI for 25kt/ SHIPS Prob RI for 30kt/ SHIPS Prob RI for 35kt/ SHIPS Prob RI for 40kt/ SHIPS Prob RI for 45kt/ SHIPS Prob RI for 55kt/	24hr RI 4 24hr RI 4 24hr RI 4 24hr RI 4 36hr RI 4	threshold= threshold= threshold= threshold= threshold=	33% is 19% is 15% is 11% is 21% is	2.0 times sample 2.8 times sample 2.7 times sample 3.7 times sample 3.8 times sample 4.3 times sample 3.8 times sample	mean (11.6%) mean (7.2%) mean (4.2%) mean (2.8%) mean (4.9%)

What is your 36 hr Intensity Forecast?

Answer: 36 hr Max Wind = 100 kt NHC Official Forecast was 75 kt

Bonus Question: What TC was this?