Tropical Cyclone Intensity Analysis and Forecasting

Dr. Mark DeMaria

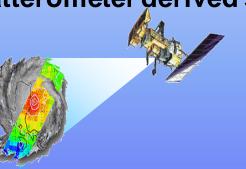
Cooperative Institute for Research in the Atmosphere Colorado State University, Fort Collins, CO

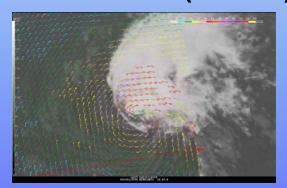
WMO RA-IV Workshop on Hurricane Forecasting and Warnings NHC, Miami, FL 6 March 2023

Outline

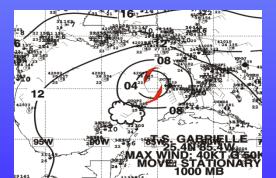
- Estimating the Current Intensity (with poll question)
- Factors that Influence Intensity Change (with poll question)
- Intensity Forecasting Models
- Official Intensity Forecasts
- Intensity Forecast Example (with poll question)

Definition of Intensity


- 1-min maximum sustained surface winds (10 m) in open exposure
- Other intensity measures
 - Minimum sea-level pressure
 - Maximum 2-min winds, 10-min winds, etc
 - Integrated wind measures (IKE, etc)



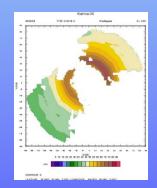
How Do We Estimate Intensity?

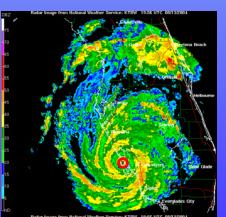


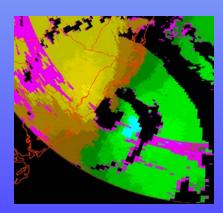
- Satellites (primary)
 - Geostationary infrared & visible images (Dvorak Technique)
 - Microwave soundings (AMSU, ATMS)
 - Scatterometer derived surface winds (ASCAT)

- Surface observations
 - Ships, buoys, land stations (limited)

How Do We Estimate Intensity?

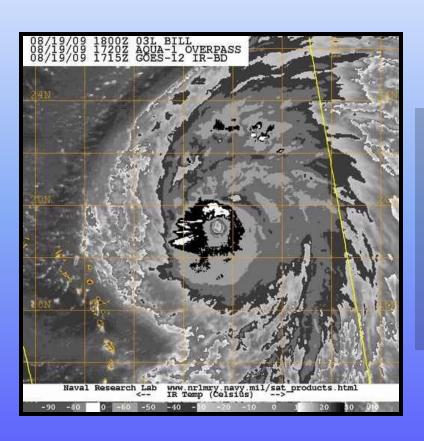

- Aircraft reconnaissance
 - Flight-level winds
 - GPS dropsondes





• Stepped-Frequency Microwave Radiometer (SFMR)

- Doppler radar
 - Land-based (WSR-88D)
 - Airborne



Example: Estimating the Current Intensity of Hurricane Bill

19 August 1800 UTC

Dvorak classification:

TAFB: T6.5 = 127 kt

SAB: T6.0 = 115 kt

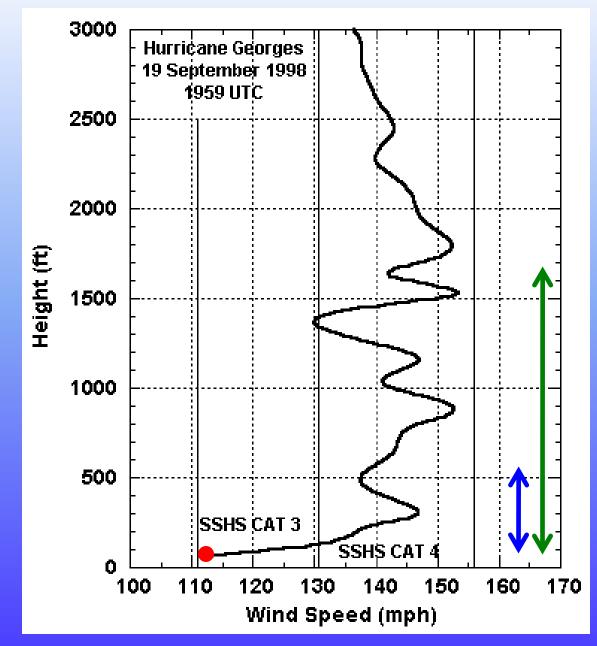
3-hr average ADT: **T6.4** = 125 kt

Dvorak Scale

CI	MWS	MSLP	MSLP
Number	(kt)	(Atlantic)	(NW Pacific)
1.0	25		
1.5	25		
2.0	30	1009 mb	1000 mb
2.5	35	1005 mb	997 mb
3.0	45	1000 mb	991 mb
3.5	55	994 mb	984 mb
4.0	65	987 mb	976 mb
4.5	77	979 mb	966 mb
5.0	90	970 mb	954 mb
5.5	102	960 mb	941 mb
6.0	115	948 mb	927 mb
6.5	127	935 mb	914 mb
7.0	140	921 mb	898 mb
7.5	155	906 mb	879 mb
8.0	170	890 mb	858 mb

Vortex Message


```
000
URNT12 KNHC 191819 CCA
VORTEX DATA MESSAGE
                        AL032009
A. 19/17:57:30Z
B. 19 deg 16 min N
  056 deg 55 min W
C. 700 mb 2665 m
                     SFMR surface wind
  102 kt
  056 deg 24 nm
   134 deg 135 kt
G. 055 deg 27 nm
   947 mb
   11 C / 3045 m
                      90% from 700 mb
   19 C / 3047 m
   6 C / NA
                     Surface estimate =
   OPEN SW
                    0.9 \times 135 \, \text{kt} = 122 \, \text{kt}
   C32
   12345 / 07
   0.02 / 0.5 nm
   AF303 0203A BILL
                                     OB 12 CC
```


MAX FL WIND 135 KT NE QUAD 17:48:30Z

- A) Date/Time of center fix
- B) Center position
- C) Std surface/min height
- D) Max sfc wind (visually observed or SFMR)
- E) Bearing/range of (D) from center
- F) Max flt-lvl wind on inbound leg
- G) Bearing/range of (F)
- H) Minimum pressure
- I) Max flt-lvl temp outside eyewall/PA
- J) Max flt-lvl temp inside eye/PA
- K) DPT/SST at (J)
- L) Eyewall character (e.g., CLOSED)
- M) Eye diameter (nm)
- N) Method of fix
- O) Fix accuracy (NAV/MET)
- P) Remarks (includes outbound max)

Dropsonde

MBL Wind

(average of lowest 500 m)

WL150 Wind

(average of lowest 150 m)

Surface Wind

Dropsonde

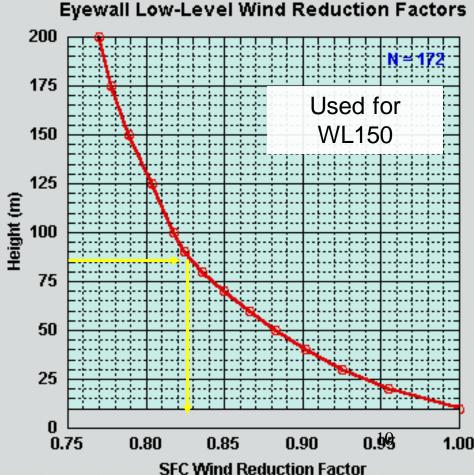

```
UZNT13 KNHC 192344

XXAA 69237 99203 70578 07807 99955 25600 09122 00912 //// ////
92277 23801 10140 85016 20600 11641 70686 148// 14599 88999 77999
31313 09608 82322
61616 NOAA3 WX03A BILL4 OB 11
62626 REL 2033N05779W 232240 SPG 2042N05793W 232707 WL150 09134 0
86 DLM WND 12128 954696 MBL WND 10139 LST WND 011=

XXBB 69238 99203 70578 07807 00955 25600 11941 24400 22920 23802
33741 17000 44719 16001 55695 146//
```


33741 17000 44719 16001 55695 146//
21212 00955 09122 11952 08618 22943 09640 33938 09646 449:
55916 10646 66896 11139 77749 13635 88740 14618 99695 150:
31313 09608 82322

61616 NOAA3 WX03A BILL4 OB 11


62626 REL 2033N05779W 232240 SPG 2042N05793W 232707 WL150 86 DLM WND 12128 954696 MBL WND 10139 LST WND 011=

Northeast eyewall:

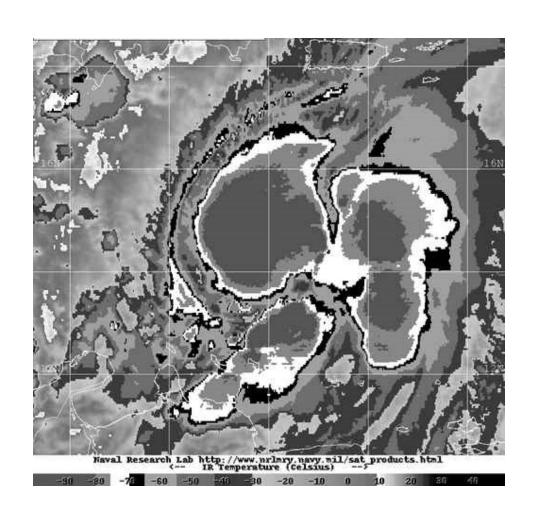
Surface = 122 kt (gust?)

MBL (lowest 500 m) = $139 \times 0.8 = 111 \text{ kt}$

WL150 (lowest 150 m) = 134 × 0.83 = 111 kt

Determine the Official Intensity

Subjective Dvorak:	127 / 115 kt
Objective ADT:	125 kt
 SFMR surface wind 	102 kt
 Recon sfc-adjusted flight-level wind: 	122 kt
 Dropsonde surface value: 	122 kt
 Drop sfc-adjusted WL150: 	111 kt
 Drop sfc-adjusted MBL: 	111 kt


OFCL at 1800 UTC:

115 kt

We can only sample a port of the TC Each observation has strengths and weaknesses We want a value that is representative of the TC's circulation

Poll Question 1 Intensity Estimation

What is the initial intensity? 15/0600 UTC

Dvorak Classifications:

TAFB: T4.5

SAB: T4.5

3-hr average ADT: T4.4

Dvorak Scale

CI	MWS	MSLP	MSLP
Number	(kt)	(Atlantic)	(NW Pacific)
1.0	25		
1.5	25		
2.0	30	1009 mb	1000 mb
2.5	35	1005 mb	997 mb
3.0	45	1000 mb	991 mb
3.5	55	994 mb	984 mb
4.0	65	987 mb	976 mb
4.5	77	979 mb	966 mb
5.0	90	970 mb	954 mb
5.5	102	960 mb	941 mb
6.0	115	948 mb	927 mb
6.5	127	935 mb	914 mb
7.0	140	921 mb	898 mb
7.5	155	906 mb	879 mb
8.0	170	890 mb	858 mb

What is the initial intensity given the following estimates?

Subjective Dvorak	77 kt
Objective Dvorak (ADT)	75 kt
SFMR Surface Wind	65 kt
Recon-adjusted Flight-level Wind	60 kt
Dropsonde Surface Wind	63 kt
Dropsonde Surface-adjusted MBL	50 kt
Dropsonde Surface-adjusted WL150	55 kt
Official Intensity at 0600 UTC	65 kt

Factors Affecting Tropical Cyclone Intensity Changes

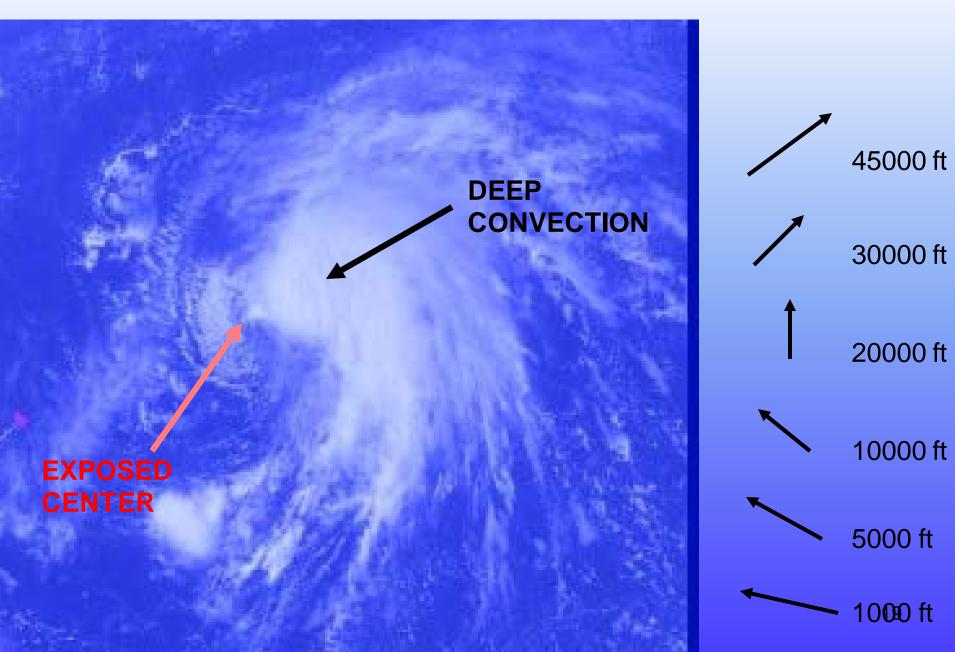
- Sea surface temperature (SST) / upper ocean heat content (OHC)
- Environmental winds, esp. vertical wind shear
- Trough interactions
- Temperature and moisture patterns in the storm environment
- Internal effects (e.g. eyewall replacement cycles)
- Interaction with land

SST vs. OHC

Sea Surface Temperatures

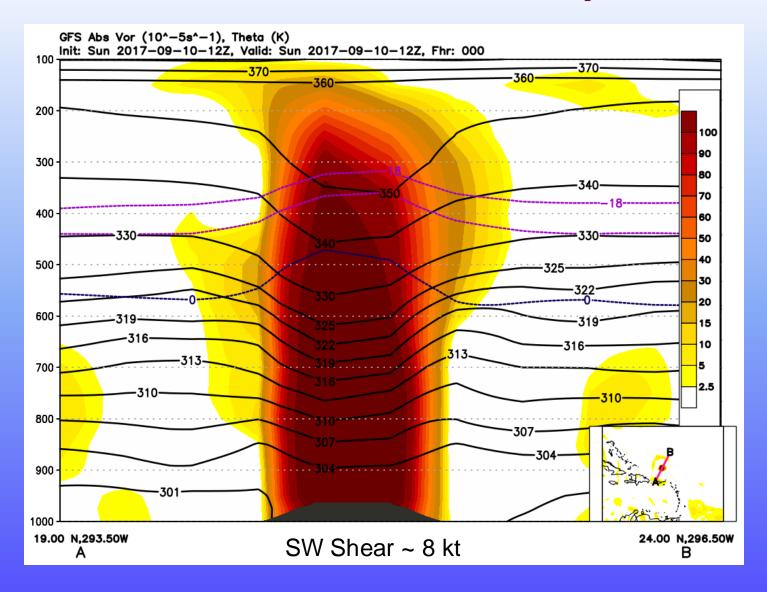
only provides a view of the very top layer of the ocean.

Ocean Heat Content

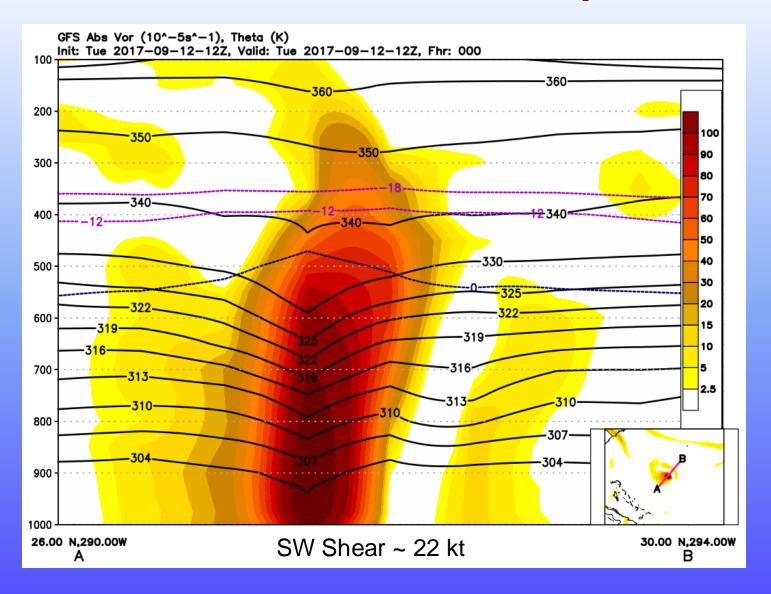

estimates the amount of heat available over a depth of warm water.

the greater the depth the more available heat that can be potentially converted to energy

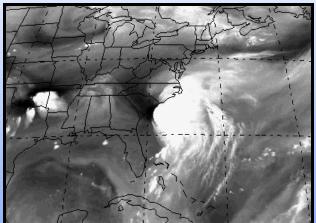
Vertical Wind Shear

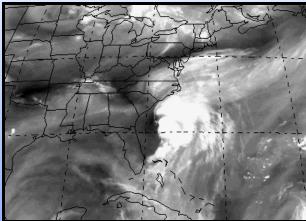


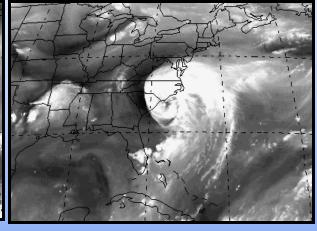
Hurricane Jose 12 UTC 10 Sept 2017



Hurricane Jose 12 UTC 12 Sept 2017


Vertical cross-section of vorticity and potential temperature anomaly from the GFS model for the initialization of the 1200 UTC forecast on September 10




Hurricane-Trough Interaction

Hurricane Bertha (1996)

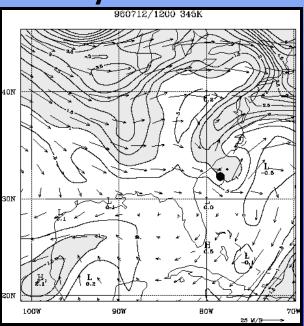
12 July 1995 06 UTC

980712/0600 345K

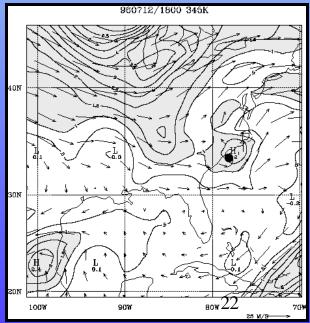
40N

30N

20N

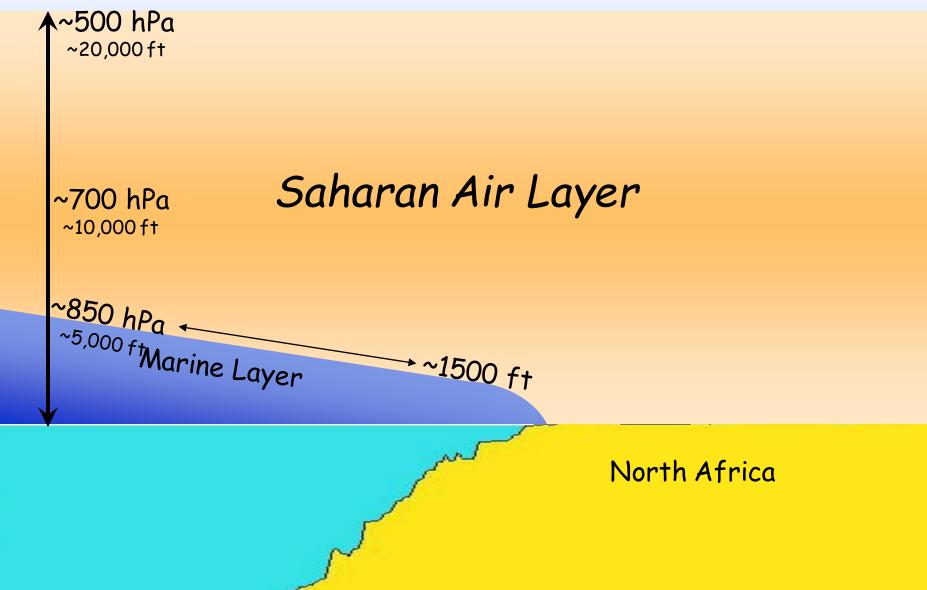

100W

90W

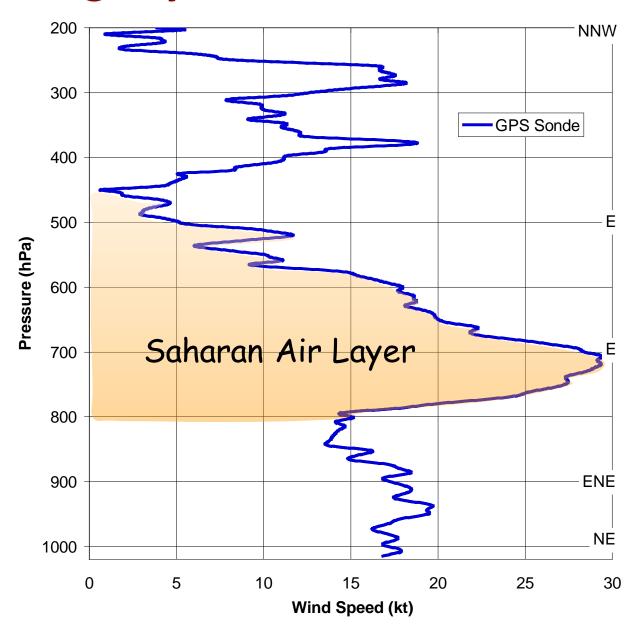

BOW

70W

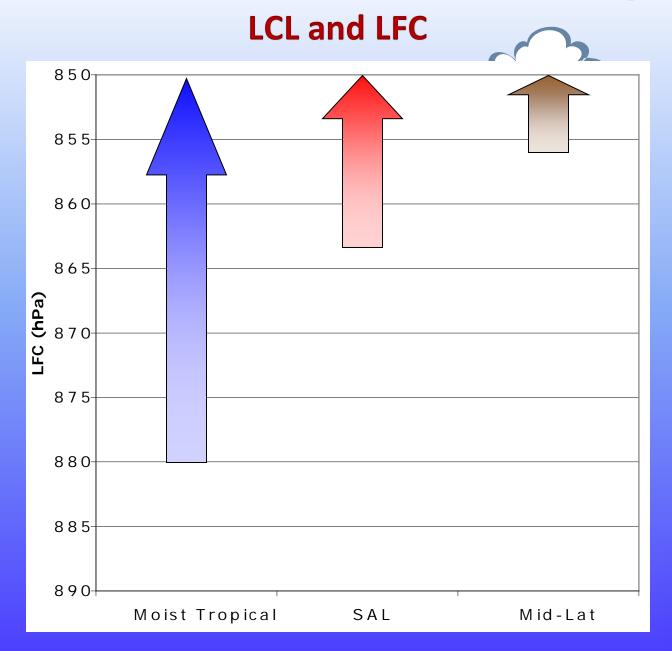
12 July 1995 12 UTC

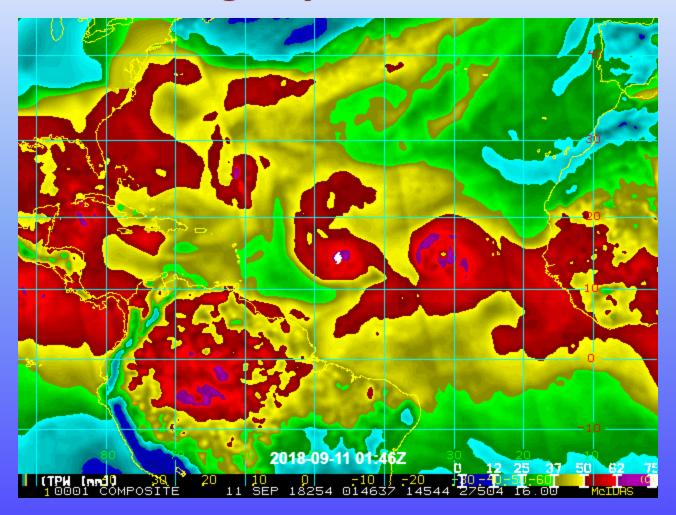

12 July 1995 18 UTC

Saharan Air Layer



Getting Dry Air into the TC Circulation



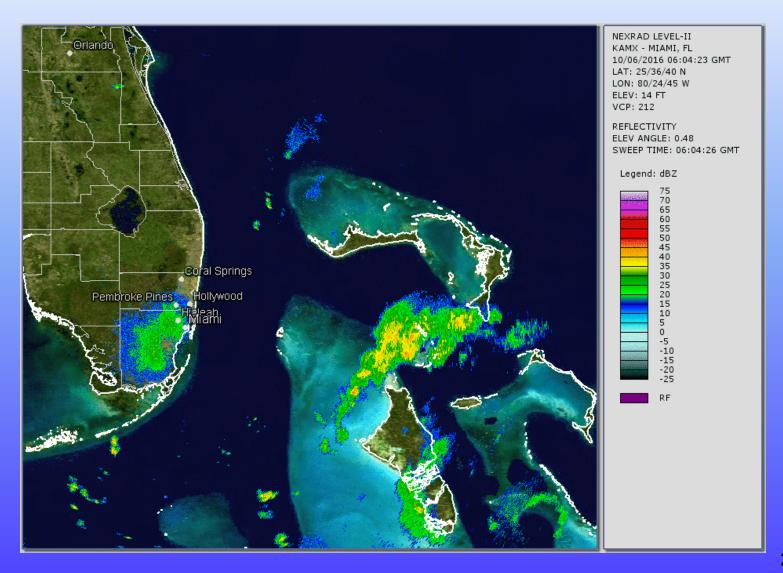


How Moisture Affects Stability

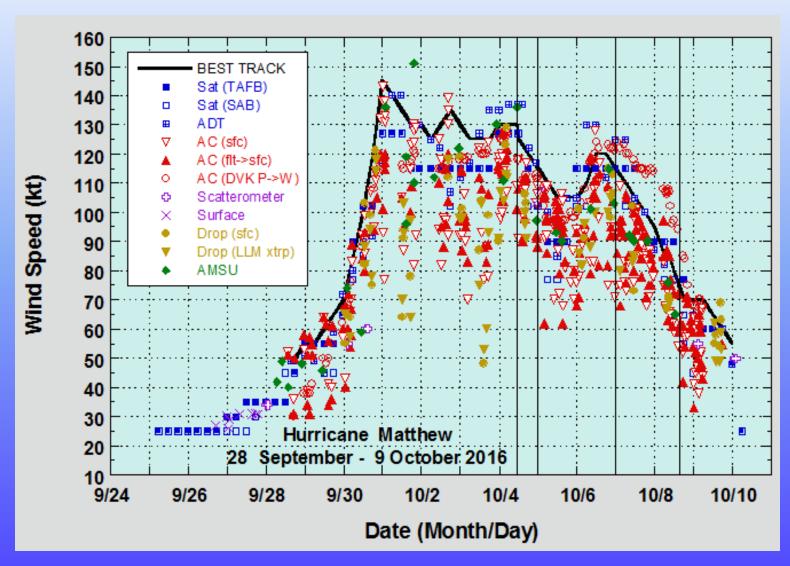
Satellite TPW Products Useful for Tracking Dry Air Intrusions

TC-centered TPW Loop for Hurricane Isaac Sept 2018

Eyewall Replacement Cycles


In addition to large-scale environmental influences, tropical cyclone intensity change can be caused by inner-core processes, such as eyewall replacement cycles:

In stronger hurricanes, we often see a concentric eyewall develop at a larger distance from the center than the radius of the original eyewall.

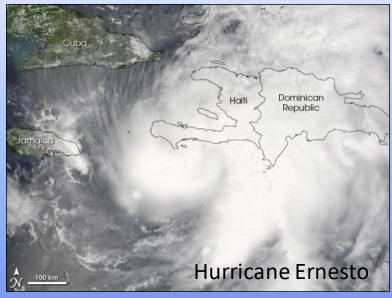

When this outer eyewall becomes dominant, some weakening usually occurs.

However, this outer eyewall could contract, in which case the hurricane would re-intensify.

Hurricane Matthew Radar Loop

Hurricane Matthew Maximum Wind

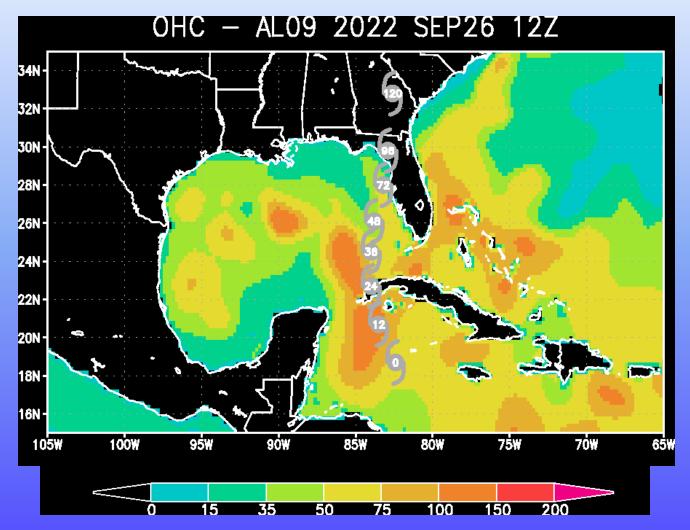
Land Interaction



In general, winds weaken over land due to lack of latent

heating and increased friction

 Strong winds move inland farther if the TC is moving faster


- Terrain can cause significant local "speed-ups" (sometimes by more than 10 – 30%) over hills, valleys, etc.
- Higher elevations in mountainous areas can have stronger winds than at sea level – common on Caribbean islands

Poll Question 2 Physical Processes

Oceanic Heat Content (kJ/cm²) for Hurricane Ian (2022)

What can you infer about possible intensity changes in the next 1 to 2 days from the OHC analysis for lan?

What can you infer about possible intensity changes in the next 1 to 2 days from the OHC analysis for lan?

- A. The large OHC values along the forecast track suggest high salinity, which will cause Ian to intensify.
- B. The large OHC values along the forecast track will limit SST cooling due to mixing, which favors intensification.
- C. OHC does not provide information about intensity change because it is only the sea surface temperature that matters.
- D. The OHC will have little effect because Ian will move across western Cuba
- E. The OHC will decrease along Ian's track, making it less likely to intensify.

Weather Forecast Methods¹

- Classical Statistical Models
 - Use observable parameters to statistical predict future evolution
- Numerical Weather Prediction (NWP)
 - Physically based forecast models
- Statistical-Dynamical Models
 - Use NWP forecasts and other input for statistical prediction of desired variables
 - Station surface temperature, precipitation, hurricane intensity changes

Tropical Cyclone Intensity Forecast Models

Statistical Models:

- Decay SHIFOR (Statistical Hurricane Intensity FORecast with inland decay).
 - Based on historical information climatology and persistence (uses CLIPER track).
 - Baseline for skill of intensity forecasts

Trajectory CLIPER

Statistically estimate track and intensity tendency instead of change over fixed time
 e.g., dV/dt instead of V(t)-V(0)

Statistical-Dynamical Models:

- SHIPS and DSHIPS (<u>Statistical Hurricane Intensity Prediction Scheme</u>):
 - Based on climatology, persistence, and statistical relationships to current and forecast environmental conditions (with inland decay applied in DSHIPS)
- LGEM (Logistic Growth Equation Model):
 - Uses same inputs as SHIPS, but environmental conditions are variable over the length of the forecast (SHIPS averages over the entire forecast)
 - More sensitive to environmental changes

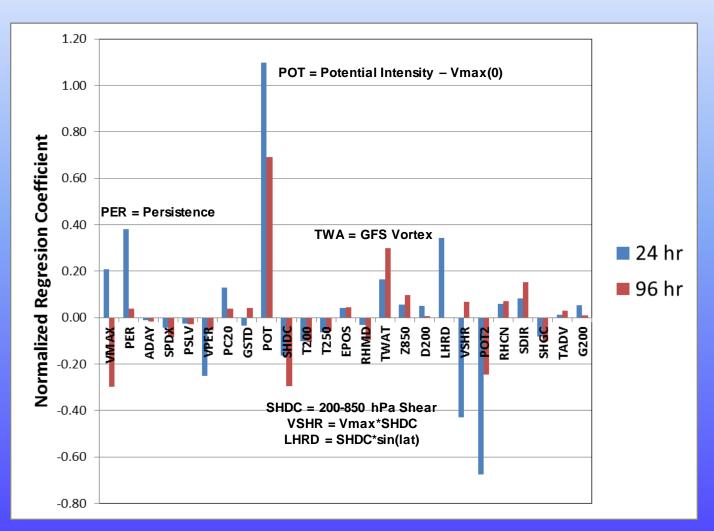
Dynamical Models:

HWRF, HMON, COAMPS-TC, GFS, UKMET, NOGAPS, ECMWF

Overview of the SHIPS Model

Multiple linear regression

$$-y = a_0 + a_1x_1 + ... a_Nx_N$$


- y = intensity change at given forecast time $-(V_6-V_0)$, $(V_{12}-V_0)$, ..., $(V_{120}-V_0)$
- x_i = predictors of intensity change
- a_i = regression coefficients
- Different coefficients for each forecast time
- Predictors x_i averaged over forecast period
- x,y normalized by subtracting sample mean, dividing by standard deviation

SHIPS Predictors

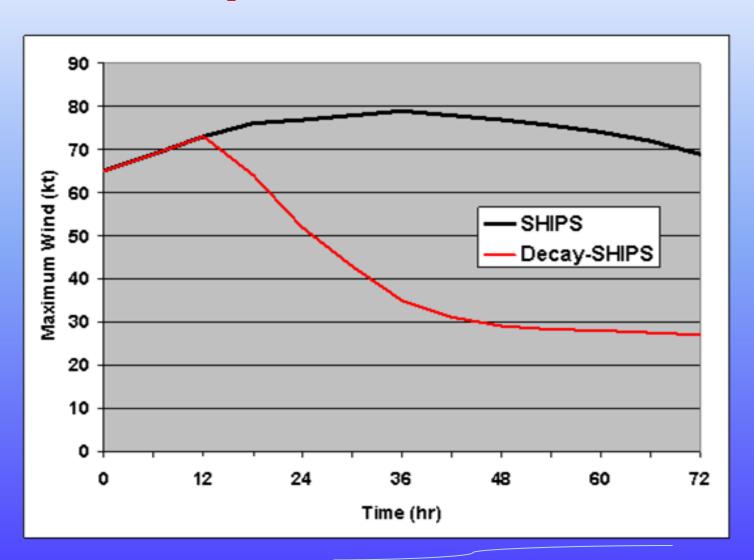
- 1. Climatology (days from peak)
- 2. V_0 (V_{max} at t= 0 hr)
- 3. Persistence (V_0-V_{-12})
- 4. V_0 * Per
- 5. Zonal storm motion
- 6. Steering layer pressure
- 7. %IR pixels < -20°C
- 8. IR pixel standard deviation
- 9. Max Potential Intensity V₀
- 10. Square of No. 9
- 11. Ocean heat content
- 12. T at 200 hPa
- 13. Tat 250 hPa
- 14. RH (700-500 hPa)
- 15. θ_e of sfc parcel θ_e of env

- 16. 850-200 hPa env shear
- 17. Shear * V₀
- 18. Shear direction
- 19. Shear*sin(lat)
- 20. Shear from other levels
- 21. 0-1000 km 850 hPa vorticity
- 22. 0-1000 km 200 hPa divergence
- 23. GFS vortex tendency
- 24. Low-level T advection
- 25. GFS vortex warm core

SHIPS Regression Coefficients at 24 and 96 hr

Impact of Land

- Detect when forecast track crosses land
- Replace multiple regression prediction with


$$dV/dt = - \mu(V-V_b)$$

 μ = climatological decay rate ~ 1/10 hr⁻¹

V_b = background intensity over land

 Decay rate reduced if area within 1 deg lat is partially over water

Example of Land Effect

Limitations of SHIPS

- V predictions can be negative
- Most predictors averaged over entire forecast period
 - Slow response to changing synoptic environment
- Strong cyclones that move over land and back over water can have low bias
- Logistic Growth Equation Model (LGEM) relaxes these assumptions

Operational LGEM Intensity Model

$$dV/dt = \kappa V - \beta (V/V_{mpi})^{n}V$$
(A) (B)

V_{mpi} = Maximum Potential Intensity estimate

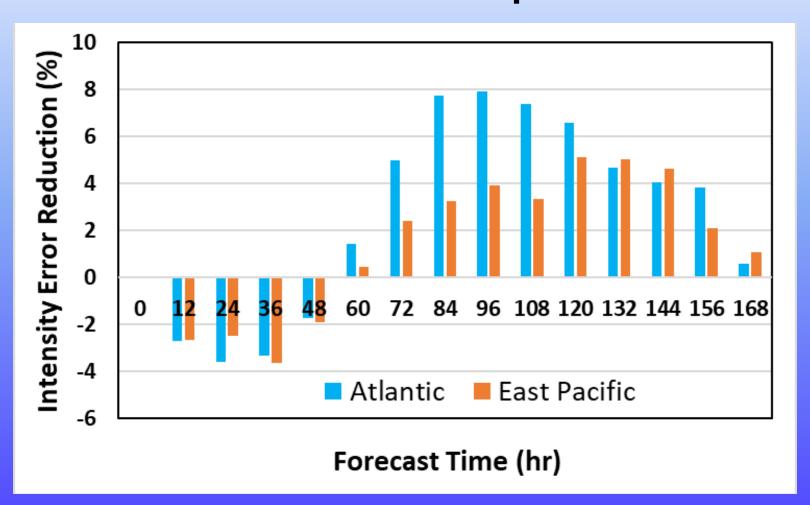
k = Max wind growth rate (from SHIPS predictors)

 β , n = empirical constants = 1/24 hr, 2.5

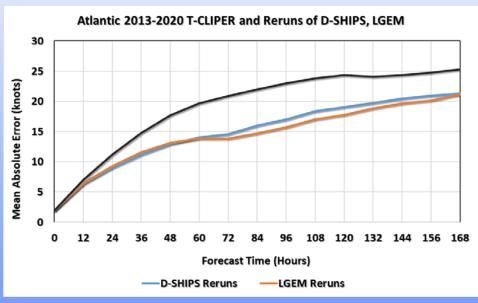
Steady State Solution: $V_s = V_{mpi}(\beta/\kappa)^{1/n}$

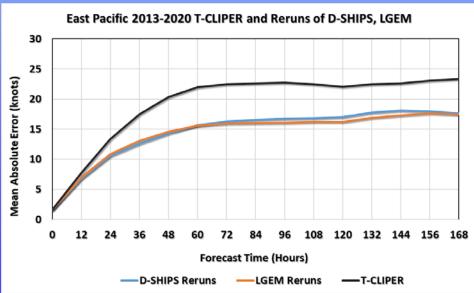
LGEM versus SHIPS

Advantages


- Prediction equation bounds the solution between 0 and V_{mpi}
- Time evolution of predictors (Shear, etc)
 better accounted for
- Movement between water and land handled better because of time stepping

Disadvantages


- Model fitting more involved
- Inclusion of persistence more difficult
- SHIPS forecasts easier to interpret


LGEM Improvement over SHIPS

Retrospective runs with 2021 Models 2013-2020 Sample

SHIPS/LGEM extended from 5 to 7days starting in 2020

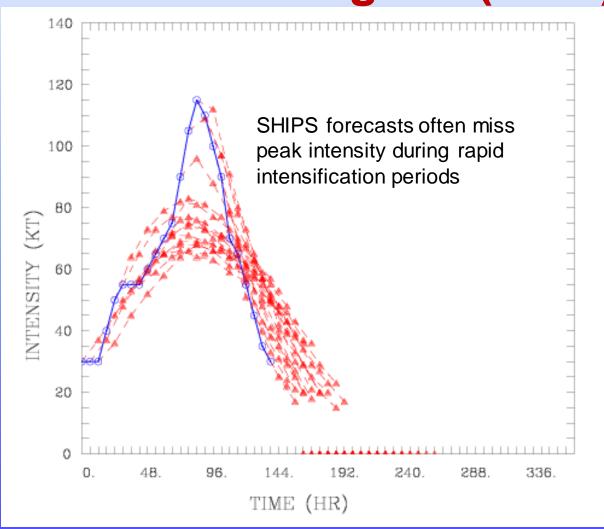
SHIPS Diagnostic File


```
* ATLANTIC
                                                 2021 SHIPS INTENSITY FORECAST
                                 * IR SAT DATA AVAILABLE,
                                                                 OHC AVAILABLE
                                                 AL052019 08/30/19 00 UTC
                                   DORIAN
TIME (HR)
                              12
                                     18
                                          24
                                                             60
                                                                               96
                                                                                          120
                                                                                                 132
                                                                                                      144
                  80
                              87
                                                 97
                                                      102
                                                            102
                                                                  105
                                                                              106
                                                                                                 97
V (KT) NO LAND
                        83
                                     90
                                          94
                                                                        102
                                                                                    103
                                                                                          103
                                                                                                       95
                                                                                                              91
                                                                                                                   90
                              87
                                                 97
                                                            102
                                                                  105
                                                                                     62
                                                                                                 31
                                                                                                        28
                                                                                                              27
                                                                                                                    27
V (KT) LAND
                  80
                        83
                                    90
                                          94
                                                      102
                                                                        102
                                                                              106
                                                                                           40
                                                     105
V (KT) LGEM
                  80
                        83
                              86
                                    89
                                          92
                                                99
                                                            105
                                                                  104
                                                                        104
                                                                              103
                                                                                     62
                                                                                           39
                                                                                                 31
                                                                                                       28
                                                                                                              27
                                                                                                                    27
                TR0P
                                                                                                                  TR0P
Storm Type
                      TR0P
                             TR0P
                                  TR0P
                                         TR0P
                                               TR0P
                                                     TR0P
                                                           TR0P
                                                                 TR0P
                                                                       TR0P
                                                                              TR0P
                                                                                   TR0P
                                                                                         TROP
                                                                                                TR0P
                                                                                                      TR0P
                                                                                                            TR0P
SHEAR (KT)
                                                 12
                                                             15
                                                                               11
                                                                                                              14
SHEAR ADJ (KT)
                                                                                                  2
                                                                                      0
SHEAR DIR
                 200
                       232
                             250
                                   243
                                         275
                                               334
                                                     299
                                                            320
                                                                  290
                                                                        293
                                                                              266
                                                                                    289
                                                                                          267
                                                                                                279
                                                                                                      252
                                                                                                            255
                                                                                                                   212
                                                                                   29.9
SST (C)
                29.4
                      29.4
                            29.3
                                  29.4
                                        29.4
                                               29.3
                                                    29.3
                                                           29.5
                                                                 29.8
                                                                       29.9
                                                                                         29.7
                                                                                                29.8
                                                                                                     29.6
                                                                                                                  29.6
                 159
                                   158
                                                     156
                                                            159
                                                                                    165
                                                                                                             156
POT. INT. (KT)
                       159
                             157
                                         158
                                               156
                                                                  164
                                                                        166
                                                                                                      159
                                                                                                                   159
                                                                              163
                                                                                          161
                                                                                                164
                 147
                       144
                             141
                                   142
                                         141
                                               138
                                                     136
                                                            138
                                                                  141
                                                                        141
                                                                              137
                                                                                    138
                                                                                          135
                                                                                                137
                                                                                                      131
                                                                                                             127
                                                                                                                   129
ADJ. POT. INT.
200 MB T (C)
               -53.3 -53.3
                            -53.4
                                  -53.1 -53.0
                                              -53.2 -52.8
                                                          -52.9
                                                                -52.6 -52.5
                                                                             -52.1
                                                                                   -52.0 -51.7
                                                                                               -52.1 -51.8
                                                                                                           -52.2
200 MB VXT (C)
               -0.1
                       0.1
                             0.2
                                   0.2
                                         0.6
                                               0.6
                                                     0.6
                                                            0.7
                                                                  1.0
                                                                        0.9
                                                                              1.0
                                                                                    1.3
                                                                                          0.9
                                                                                                0.8
TH_E DEV (C)
                        10
                              10
                                    10
                                          10
                                                10
                                                      10
                                                             9
                                                                    9
                                                                                      9
                                                                                           10
                                                                                                  8
                                                                                                        10
                  56
                              57
                                    59
                                          59
                                                 58
                                                                                           62
                                                                                                  56
                                                                                                                    50
700-500 MB RH
                                                             61
                                                                   68
                                                                               65
                                                                                     60
                                                                                                              50
                                    14
                                                                               27
                                                                                                              27
MODEL VTX (KT)
                  12
                        13
                              14
                                          16
                                                17
                                                       20
                                                             21
                                                                   23
                                                                         22
                                                                                     26
                                                                                           28
                                                                                                 26
                                                                                                        27
850 MB ENV VOR
                       -46
                             -45
                                                                   23
                                                                               17
                                                                                                                    31
                                    49
                                                 13
200 MB DIV
                  36
                        30
                              14
                                          30
                                                       14
                                                                   25
                                                                               25
                                                                                     10
                                                                                           60
                                                                                                 23
                                                                                                        63
                                                                                                              49
                                                                                                                    89
700-850 TADV
                   0
                                     2
                                                                                            2
                                                                                                                     0
                               0
                                                        0
                                                                                                  4
                                   565
                                         622
LAND (KM)
                 397
                       444
                             513
                                               617
                                                      503
                                                            332
                                                                  184
                                                                         84
                                                                                                       -61
                                                                                         28.5 xx.x xx.x xx.x xx.x
LATT (DEG N)
                22.8
                      23.6
                            24.3
                                  24.9
                                        25.4
                                               26.1
                                                    26.5
                                                           26.8
                                                                 27.0
                                                                       27.2
                                                                             27.5
                                                                                   27.9
LONG(DEG W)
                68.0 68.8
                            69.5
                                  70.4
                                        71.3
                                              73.2
                                                    75.0
                                                           76.7
                                                                 78.2
                                                                       79.3
                                                                             80.3
                                                                                   81.0
                                                                                         81.5
                                           9
                                                                                            5
STM SPEED (KT)
                        10
                              10
                                    10
                                                 9
                                                       8
                                                             7
                                                                    6
                                                                          5
                                                                                      4
                                                                                                  5
                                                                                                              4
                              50
                                    58
HEAT CONTENT
                  45
                        45
                                           46
                                                 50
                                                       57
                                                             53
                                                                   53
                                                                               44
                                                                                     40
                                                                                                  15
                                                                                                        10
                                                                                                              16
  FORECAST TRACK FROM OFCI
                                INITIAL HEADING/SPEED (DEG/KT):330/ 11
                                                                             CX,CY: -4/ 10
  T-12 MAX WIND: 75
                                 PRESSURE OF STEERING LEVEL (MB): 623 (MEAN=620)
  GOES IR BRIGHTNESS TEMP. STD DEV. 50-200 KM RAD: 14.5 (MEAN=14.5)
  % GOES IR PIXELS WITH T < -20 C 50-200 KM RAD: 65.0 (MEAN=65.0)
  PRELIM RI PROB (DV .GE. 35 KT IN 36 HR):
                        INDIVIDUAL CONTRIBUTIONS TO INTENSITY CHANGE
                                                                      96
                                                                         108 120 132 144 156 168
                                            36 48
                                                      60
  SAMPLE MEAN CHANGE
                                                            10.
                                                                 11.
                                                                      12.
                                                                           12.
                                                                                13.
  SST POTENTIAL
                              3.
                                                   2.
                                                                                          -8. -10. -11.
                                   4.
                                                                      -4.
  VERTICAL SHEAR MAG
                              0.
                                                             5.
                                                                       8.
                                                                            8.
                                                                                 8.
                                                                                      9.
                                                                                           9.
                                                                                                9.
  VERTICAL SHEAR ADJ
                         0.
                                              2.
                                                   3.
                                                             5.
                                                                  4.
  VERTICAL SHEAR DIR
                        -0.
                                   -0.
                                        -0.
                                             -0.
                                                  -0.
                                                       -0.
                                                            -0.
                                                                 -0.
                                                                      -0.
                                                                            0.
                                                                                 0.
  PERSISTENCE
                                        0.
                                             0.
                                                   0.
                                                        0.
                                                             0.
                                                                      -0.
                                                                            -0.
                                                                                 -0.
  200/250 MB TEMP.
                                                                            -3.
  THETA E EXCESS
  700-500 MB RH
                                        -0.
                                             -0.
                                                                      -3.
  MODEL VTX TENDENCY
                                             3.
                                                        8.
                                                           11.
                                                                 10.
                                                                      15.
                                                                           14.
                                                                                15.
                                                                                     11.
  850 MB ENV VORTICITY
                                                                      -2.
  200 MB DIVERGENCE
                                   -0.
                                        -0.
                                             -0.
                                                  -0.
                                                            -1.
                                                                           -0.
                                                                                 0.
                                                                                      0.
  850-700 T ADVEC
                             -0.
                                   -0.
                                        -0.
                                             -0.
                                                  -0.
                                                       -0.
                                                            -0.
                                                                 -0.
                                                                      -0.
                                                                           -0.
                                   0.
  ZONAL STORM MOTION
                                        0.
                                             0.
                                                   0.
                                                        0.
                                                                 -0.
  STEERING LEVEL PRES
                             -0.
                                        -0.
                                             -0.
                                                  -0.
                                                       -0.
                                                            -0.
                                                                      -0.
                                                                                          -0. -0. -0.
  DAYS FROM CLIM. PEAK
                         0.
                                       -0.
                                             0.
                                                   0.
                                                        0.
                                                             0.
                                                                  0.
                                                                                -0. -0. -0. -1. -0.
  GOES PREDICTORS
                                                                                      0. -0.
  OCEAN HEAT CONTENT
                         0.
                              0.
                                   0.
                                        0.
                                             Θ.
                                                   0.
                                                       -0. -0.
                                                                 -0.
                                                                           -0.
                                                                               -0. -0. -0. -0. -0.
  RI POTENTIAL
                                   2.
                                        2.
                                                                  0.
                         3. 7. 10. 14. 17. 22. 22. 25. 22. 26. 23. 23. 17. 15. 11. 10.
  TOTAL CHANGE
```


SHIPS Diagnostic File

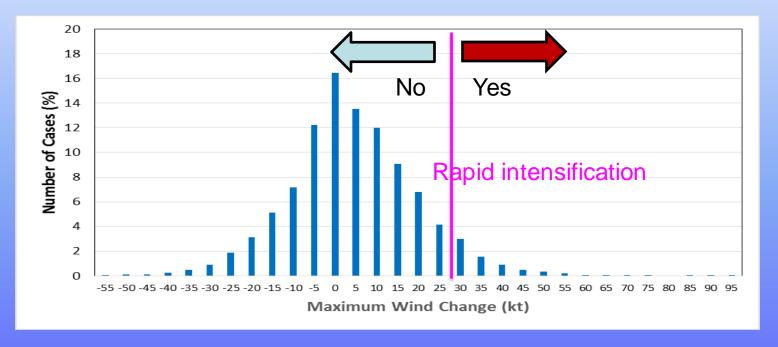
																		_
				* ATLA	NTIC		21 SHIF					*						
					SAT DAT		[LABLE,			VAILAE	LE	*						
				* DOR	RIAN	AL6	952019	08/30	0/19 0	00 UTC		*						
TIME (HR)	0	6	12	18	24	36	48	60	72	84	96	108	120	132	144	156	168	
V (KT) NO LAND	80	83	87	90	94	97	102	102	105	102	106	103	103	97	95	91	90	
V (KT) LAND	80	83	87	90	94	97	102	102	105	102	106	62	40	31	28	27	27	
V (KT) LGEM	80	83	86	89	92	99	105	105	104	104	103	62	39	31	28	27	27	
Storm Type	TR0P	TR0P	TR0P	TR0P	TR0P	TR0P	TR0P	TR0P	TR0P	TR0P	TR0P	TR0P	TR0P	TR0P	TR0P	TR0P	TR0P	
SHEAR (KT)	9	8	4	3	8	12	12	15	11	11	11	16	15	16	16	14	21	Mean=15 k
SHEAR ADJ (KT)	-1	-2	-1	-1	-4	-1	-5	-2	-4	0	0	0	-2	2	10	3	2	and the same of th
SHEAR DIR	200	232	250	243	275	334	299	320	290	293	266	289	267	279	252	255	212	<mark>σ=10 kt</mark>
SST (C)	29.4	29.4	29.3	29.4	29.4	29.3	29.3	29.5	29.8	29.9	29.8	29.9	29.7	29.8	29.6	29.4	29.6	
POT. INT. (KT)	159	159	157	158	158	156	156	159	164	166	163	165	161	164	159	156	159	
ADJ. POT. INT.	147	144	141	142	141	138	136	138	141	141	137	138	135	137	131	127	129	
200 MR I (C)	-53.3	-53.3	-53.4	-53.1	-53.0	-53.2	-52.8	-52.9	-52.6	-52.5		-52.0	-51./	-52.1	-51.8	-52.2		
200 MB VXT (C)	-0.1	0.1	0.2	0.2	0.6	0.6	0.6	0.7	1.0	0.9	1.0	1.3	0.9	0.8	0.7	0.7	0.6	
TH E DEV (C)	11	10	10	10	10	10	10	9	9	9	9	9	10	8	10	7	8	Mean=55%
700-500 MB RH	56	56	57	59	59	58	63	61	68	64	65	60	62	56	55	50	50	The second secon
MODEL VTX (KT)	12	13	14	14	16	17	20	21	23	22	27	26	28	26	27	27	28	σ=10%
850 MB ENV VOR	-43	-46	-45	-32	-22	-24	9	-1	23	-2	17	-15	11	-25	-2	-4	31	
200 MB DIV	36	30	14	49	30	13	14	-3	25	-3	25	10	60	23	63	49	89	
700-850 TADV	0	1	0	2	1	-6	0	-1	-1	-1	-1	-1	2	4	1	6	0	
LAND (KM)	397	444	513	565	622	617	503	332	184	84	4	-46	-78	-77	-61	-46	-77	
LA (DEG N)	22.8	23.6	24.3	24.9	25.4	26.1	26.5	26.8	27.0	27.2	27.5	27.9			xx.x		XX.X	
LONG(DEG W)	68.0	68.8	69.5	70.4	71.3	73.2	75.0	76.7	78.2	79.3	80.3	81.0	81.5	xxx.x	xxx.x	xxx.x	XXX.X	
STM SPEED (KT)	11	10	10	10	9	9	8	7	6	5	4	4	5	5	4	4	4	
HEAT CONTENT	45	45	50	58	46	50	57	53	53	56	44	40	32	15	10	16	7	
FORECAST TRAC	K EBUN	1 OECT		ΝΤΤΤΔΙ	HEADI	ING/SPE	ED (DE	G/KT)	330/ 1	1	CX CY	· _4/	10				Mean:	=30kJ/cm ²

ORECAST TRACK FROM OFCI INITIAL HEADING/SPEED (DEG/KT):330/ 11 CX,CY: -4/ 10


T-12 MAX WIND: 75 PRESSURE OF STEERING LEVEL (MB): 623 (MEAN=620)
GOES IR BRIGHTNESS TEMP. STD DEV. 50-200 KM RAD: 14.5 (MEAN=14.5)

% GOES IR PIXELS WITH T < -20 C 50-200 KM RAD: 14.5 (MEAN=14.5)

PRELIM RI PROB (DV .GE. 35 KT IN 36 HR): 18.7


σ=10kJ/cm²

SHIPS Forecasts For East Pacific Hurricane Georgette (2016)

24 hr Intensity Change PDF

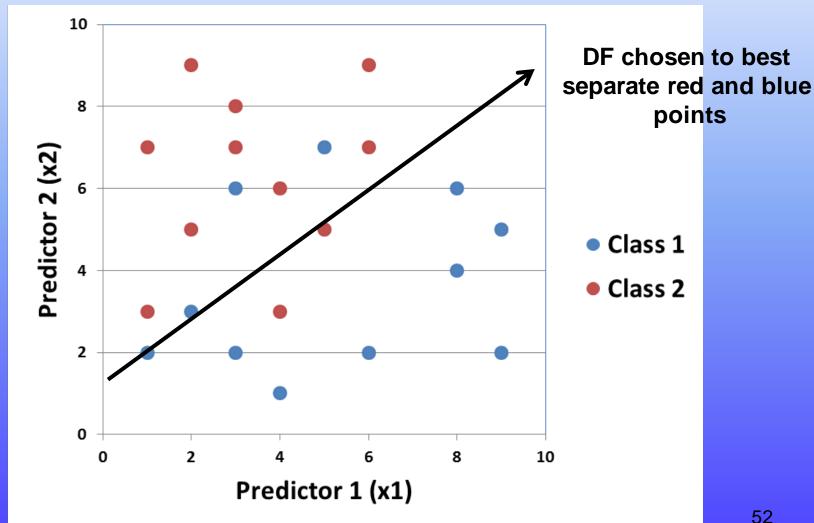
Atlantic Over-Water Cases

Mean: 4.3 kt Std Dev: 15 kt Range -55 kt to +95 kt

4th percentile: -25 kt 96th percentile: +30 kt

The Rapid Intensification Index

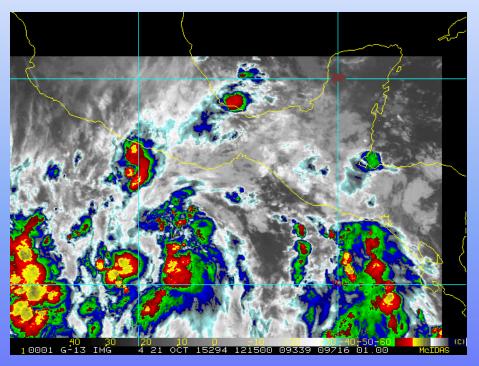
- Define RI as 30 kt or greater intensity increase in 24 hr
- Find subset of SHIPS predictors that separate RI and non-RI cases
- Use training sample to convert discriminant function value to a probability of RI
- AL and EP/CP versions include more thresholds (25, 30, 35, 40 kt changes, etc)

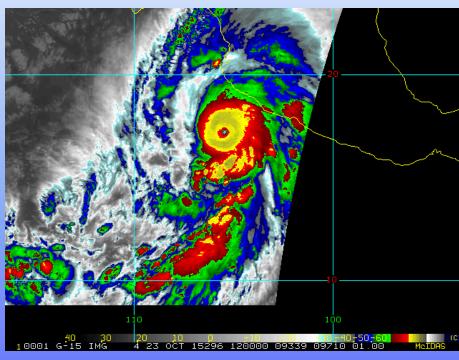

Linear Discriminant Analysis

- 2 class example
 - Objectively determine which of two classes a data sample belongs to
 - Rapid intensifier or non-rapid intensifier
 - Predictors for each data sample provide input to the classification
- Discriminant function (DF) linearly weights the inputs

$$DF = a_0 + a_1x_1 + ... a_Nx_N$$

 Weights chosen to maximize separation of the classes


Graphical Interpretation of the Discriminant Function


RII Discriminators

- 1. Previous 12 h max wind change (persistence)
- 2. Current intensity
- 3. Maximum Potential Intensity Current intensity
- 4. Oceanic Heat Content
- 5. 200-850 hPa shear magnitude (0-500 km)
- 6. 200 hPa divergence (0-1000 km)
- 7. Mid-level dry air parameter
- 8. TPW < 45 mm in upshear direction
- 9. IR imagery cold pixel variable
- 10. Azimuthal standard deviation of IR brightness temperature

PATRICIA INTENSIFIED FROM 40 KT TO 185 KT IN 48 HOURS!

21 OCT 2015 12 UTC

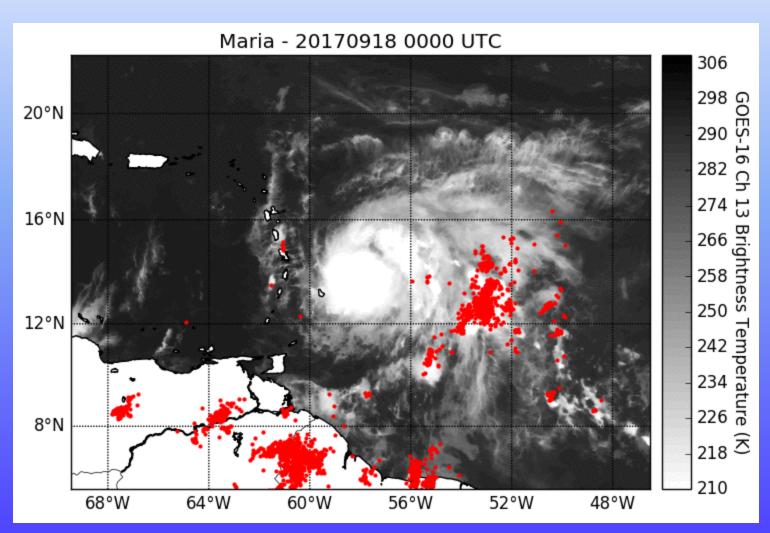
23 OCT 2015 12 UTC

RI Guidance

Hurricane Patricia (2015 - East Pacific)

```
* EAST PACIFIC 2021 SHIPS INTENSITY FORECAST
                                  * IR SAT DATA AVAILABLE,
                                                                  OHC AVAILABLE
                                                                                     *
                                                 EP202015 10/22/15 06 UTC
                                  * PATRICIA
TIME (HR)
                               12
                                     18
                                           24
                                                 36
                                                        48
                                                              60
                                                                    72
                                                                          84
                                                                                      108
                                                                                            120
                                                                                                  132
                                                                                                         144
                                                                                                               156
                                                                                                                     168
V (KT) NO LAND
                                                                          59
                                                                                50
                                                                                                         35
                                                                                                                     28
                  70
                         82
                               94
                                    105
                                          113
                                                 124
                                                       117
                                                              89
                                                                    70
                                                                                       44
                                                                                             41
                                                                                                   38
                                                                                                                32
                                                                    35
                                                                                       27
                                                                                                   27
                         82
                               94
                                                              52
V (KT) LAND
                   70
                                    105
                                          113
                                                124
                                                        95
                                                                          29
                                                                                28
                                                                                             27
                                                                                                         27
                                                                                                                27
                                                                                                                      27
V (KT) LGEM
                   70
                         83
                               95
                                    106
                                          115
                                                122
                                                        91
                                                              50
                                                                    34
                                                                         N/A
                                                                               N/A
                                                                                      N/A
                                                                                            N/A
                                                                                                  N/A
                                                                                                        N/A
                                                                                                              N/A
                                                                                                                     N/A
                                               TR0P
Storm Type
                       TR0P
                             TR0P
                                   TR0P
                                         TR0P
                                                      TR0P
                                                            TR0P
                                                                  TR0P
                                                                         N/A
                                                                               N/A
                                                                                            N/A
                                                                                                        N/A
                                                                                                              N/A
                                                                                                                     N/A
                                                                                                                    N/A
SHEAR (KT)
                                6
                                     11
                                           11
                                                  12
                                                        24
                                                              31
                                                                    46
                                                                         N/A
                                                                               N/A
                                                                                      N/A
                                                                                            N/A
                                                                                                  N/A
                                                                                                        N/A
                                                                                                              N/A
SHEAR ADJ (KT)
                    0
                                           -5
                                                        4
                                                                     1
                                                                         N/A
                                                                               N/A
                                                                                            N/A
                                                                                                                    N/A
                                                                                      N/A
                                                                                                  N/A
                                                                                                        N/A
                                                                                                              N/A
SHEAR DIR
                                          178
                                                 189
                   42
                        229
                              228
                                    197
                                                       195
                                                             219
                                                                   232
                                                                         N/A
                                                                               N/A
                                                                                      N/A
                                                                                            N/A
                                                                                                  N/A
                                                                                                        N/A
                                                                                                              N/A
                                                                                                                    N/A
SST (C)
                                  30.3 30.1 30.5 30.6 28.5 28.6
                                                                         N/A
                                                                              N/A
                                                                                     N/A
                                                                                           N/A
                                                                                                                    N/A
                                                                                                  N/A
```

```
** 2021 E. Pacific RI INDEX EP202015 PATRICIA
                                                     10/22/15 06 UTC **
(SHIPS-RII PREDICTOR TABLE for 30 KT OR MORE MAXIMUM WIND INCREASE IN NEXT 24-h)
    Predictor
                               Value
                                       RI Predictor Range Scaled Value(0-1) % Contribution
POT = MPI-VMAX (KT)
                                98.7
                                         40.5 to
                                                   149.3
                                                                0.53
                                                                              13.6
12 HR PERSISTENCE (KT)
                                25.0
                                        -22.0 to
                                                    44.0
                                                                              20.8
                                                                0.71
D200 (10**7s-1)
                                        -33.0 to
                                                  159.5
                                                                0.78
                               116.8
                                                                              18.5
850-200 MB SHEAR (KT)
                                 6.3
                                         19.6 to
                                                                0.73
                                                                              16.6
                                                     1.3
                                                   132.0
MAXIMUM WIND (KT)
                                70.0
                                         22.5 to
                                                                0.83
                                                                              14.9
STD DEV OF IR BR TEMP
                                 6.3
                                         37.8 to
                                                     2.1
                                                                0.88
                                                                              14.2
BL DRY-AIR FLUX (W/M2)
                               120.8
                                        800.8 to
                                                  -82.5
                                                                0.77
                                                                             -13.8
HEAT CONTENT (KJ/CM2)
                                61.6
                                          2.7 to
                                                                0.57
                                                  106.7
                                                                               7.6
%area of TPW <45 mm upshear :
                                         56.6
                                                     0.0
                                                                1.00
                                                                               5.0
                                 0.0
                                              to
2nd PC OF IR BR TEMP
                                                    -2.3
                                -0.3
                                          2.2
                                                                0.55
                                                                               1.6
                                              to
SHIPS Prob RI for 20kt/ 12hr RI threshold= 100% is
                                                   15.9 times climatological mean (
                                                                                     6.3%)
SHIPS Prob RI for 25kt/ 24hr RI threshold= 100% is
                                                     8.0 times climatological mean (12.5%)
SHIPS Prob RI for 30kt/ 24hr RI threshold=
                                            99% is
                                                    11.6 times climatological mean ( 8.6%)
SHIPS Prob RI for 35kt/ 24hr RI threshold=
                                            98% is
                                                    16.1 times climatological mean (
                                                                                     6.2%)
SHIPS Prob RI for 40kt/ 24hr RI threshold=
                                            82% is
                                                    19.5 times climatological mean ( 4.2%)
SHIPS Prob RI for 45kt/ 36hr RI threshold=
                                            94% is
                                                    14.0 times climatological mean (
                                                                                     6.7%)
SHIPS Prob RI for 55kt/ 48hr RI threshold=
                                            58% is
                                                     9.9 times climatological mean
                                                                                     5.9%)
```


13% is

SHIPS Prob RI for 65kt/ 72hr RI threshold=

2.7 times climatological mean (

4.7%)

GOES-16 Imagery and Lightning Locations

Using GLM to Improve the RII

Experimental tests using lightning in RII show improved skill

Plan to run real-time experimental version

this season

RII PREDICTORS

POT: SST Potential

SHDC: Shear

D200: Divergence

PER: Persistence

PC30: % IR pixels < -30°C

TBSTDo: GOES IR brightness temp

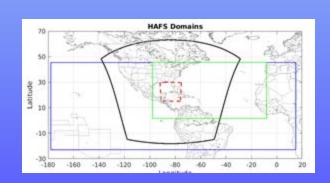
standard deviation

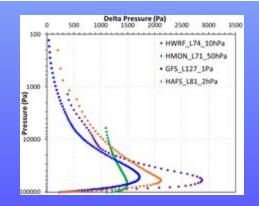
OHC: Ocean heat content

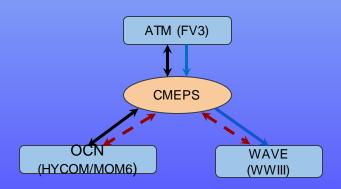
RHLO: Relative humidity

LM02: Inner-core lightning

LM24: Outer-rainband lightning

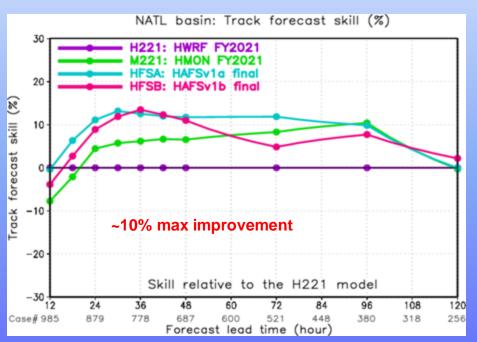

Tropical Cyclone Intensity Dynamical Forecast Models

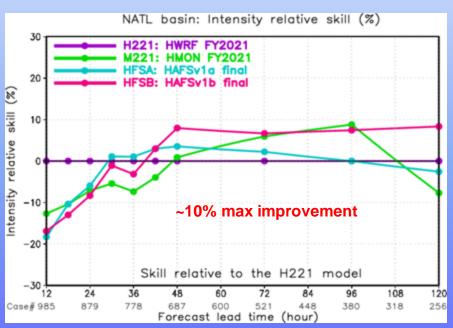



- Regional Models: HWRF, HMON, COAMPS-TC
- Global Models: NCEP GFS, UKMET, ECMWF, Navy NAVGEM, Canadian
- These models have forecast errors due to...
 - sparse observations
 - inadequate resolution (need to go down to a few km grid spacing; the HMON and HWRF, our highest-resolution operational hurricane models, are currently 1-2 km).
 - incomplete understanding and simulation of basic physics of intensity change.
 - problems with representation of shear.
- Steady improvements over past few years to due improved resolution, physics and data assimilation

HWRF and HMON being Replaced by HAFS in 2023 Two Configurations for HAFS IOC

HAFSv1.0	Domain*	Resolution*	DA/VI	Ocean/Wave Coupling	Physics	Basins
HFSA	Storm-centric with one moving nest, parent: ~78x75 degree, nest: ~12x12 degree	Regional (ESG)), ~6/2 km, ~L81, ~2 hPa model top	Vmax > 50 kt warm- cycling VI and 4DEnVar DA	Two-way HYCOM, one- way WW3 coupling for NHC AOR	Physics suite-1	All global Basins NHC/CPHC/JTWC Max 7 Storms Replace HWRF
HFSB	Storm-centric with one moving nest, parent: ~75x75 degree, nest: ~12x12 degree	Regional (ESG), ~6/2 km, ~L81, ~2 hPa model top	Vmax > 40 kt warm- cycling VI and 4DEnVar DA	Two-way HYCOM No Wave	Physics suite-2	NHC/CPHC Max 5 Storms Replace HMON




HAFS Physics Schemes

	Suite 1	Suite 2	Reference
Land/ocean Surface	NOAH LSM VIIRS veg type, HYCOM	NOAH LSM VIIRS veg type HYCOM	Ek et al. (2003)
Surface Layer	GFS, HWRF TC- specific sea surface roughnesses	GFS, HWRF TC- specific sea surface roughnesses	Miyakoda and Sirutis (1986); Long (1984, 1986)
Boundary Layer	Sa-TKE-EDMF, TC-related calibration, mixing length tuning	Sa-TKE-EDMF, TC-related calibration, tc_pbl=1*, mixing length tuning	Han et al. (2019) *Chen et al. (2022)
Microphysics	GFDL single- moment	Thompson double- moment	Lin et al. (1983) Chen and Lin (2013)
Radiation	RRTMG Calling frequency 720 s	RRTMG Calling frequency 1800 s	lacono et al. (2008)
Cumulus convection (deep & shallow)	Scale-aware-SAS calibrated entrainment	Scale-aware-SAS	Han et al. (2017)
Gravity wave drag	Unified GWD (orographic on/convective off)	Unified GWD (orographic on/convective off)	Alpert et al. (1988)

Final configurations: Track/intensity forecast skills (NATL) Late Model Verification

Track

Consensus Forecasts

- ICON Consensus that is computed by averaging the forecast intensities from Decay-SHIPS, LGEM, HWRF, HMON, COAMPS-TC.
- IVCN Consensus that requires at least 2 of Decay-SHIPS,
 LGEM, HWRF, HMON and COAMPS-TC.
- FSSE (Florida State Superensemble) Consensus that uses dynamical models and the previous NHC forecast. The FSSE learns from past performances of its member models in a "training phase", then accounts for the model biases.
- HCCA (HFIP Corrected Consensus Approach) FSSE approach adapted to NHC operations

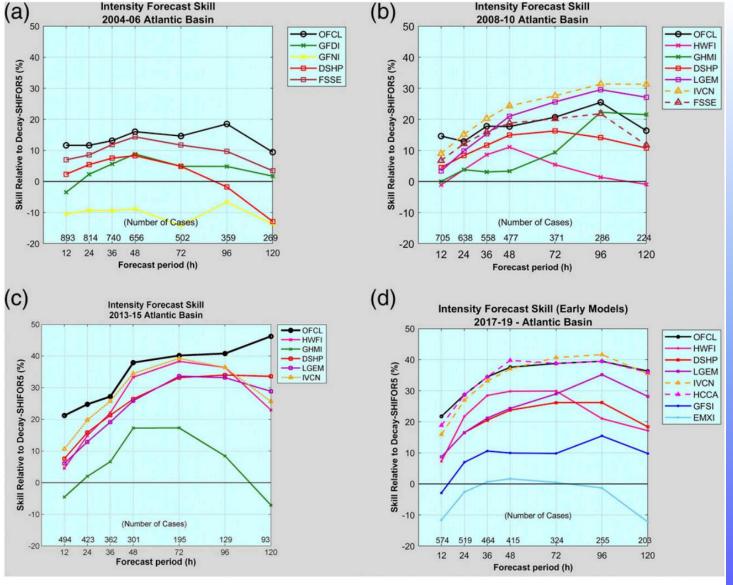
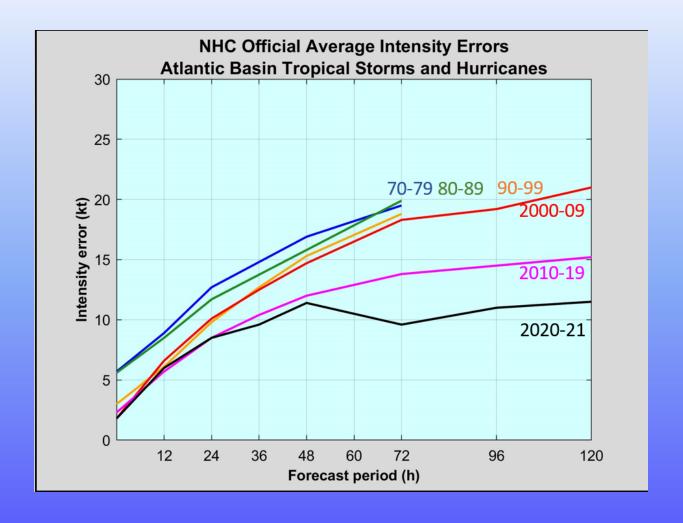


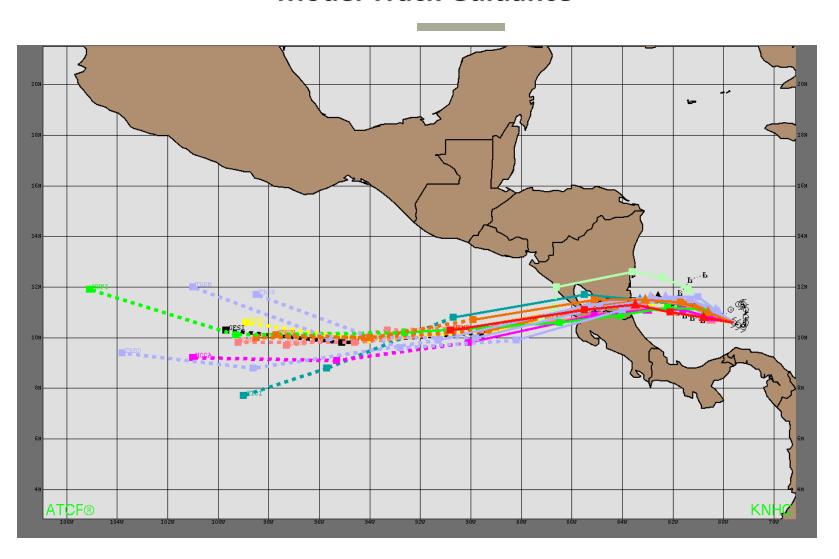
FIG. 5. NHC and intensity model skill for (a) 2004–06, (b) 2008–10, (c) 2013–15, and (d) 2017–19. NHC skill is shown in black, and the various models are depicted in the other colors. The number of verifying events at each forecast lead time is shown above the *x* axis. Models not previously defined: NHC forecasts (OFCL), HWRF interpolated forecasts (HWFI), GFDL interpolated forecasts (GFDI), GFDL run off the U.S. Navy Global Atmospheric Prediction System (GFNI), Florida State Super Ensemble (FSSE), GFS interpolated forecasts (GFSI), and ECMWF interpolated forecasts (EMXI).

NHC Official Intensity Forecast

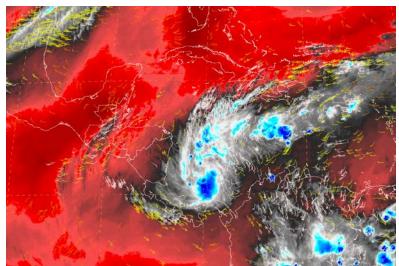


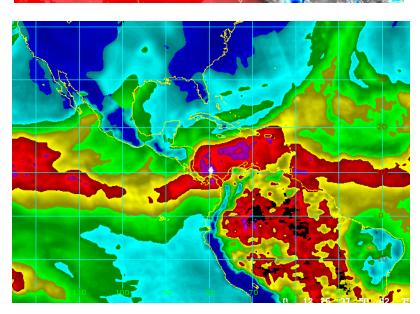
- Based on statistical guidance from SHIPS and LGEM,
 qualitative guidance from dynamical models and consensus.
- HWRF and COAMPS TC more skillful last few years
- Persistence is used quite a bit!
- Obvious signs in the environment, i.e. cooler waters, increasing upper-level winds, are taken into account.
- Generally corresponds to what is normal for a storm in any particular situation (e.g. the standard Dvorak development rate).
- Tends to be conservative; extreme events are almost never forecast.
- For forecasts 48 hr and beyond, the average error is roughly
 1 SSHWS Category (10-15 knots).

Atlantic Intensity Error Trends

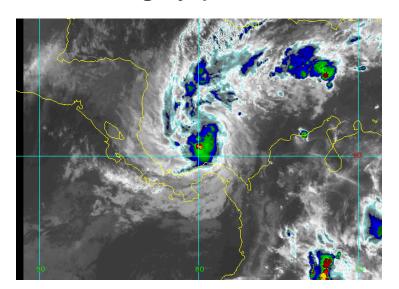


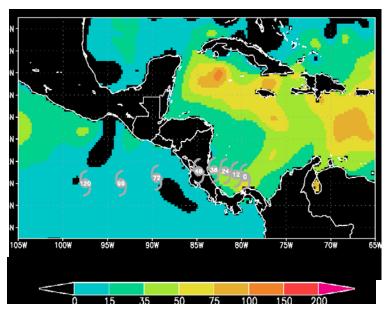
Only small improvements between 1970-2009, but errors have decreased more sharply this decade.


Poll Question 3 Intensity Forecast


Part 2: 36-Hour Forecast Intensity

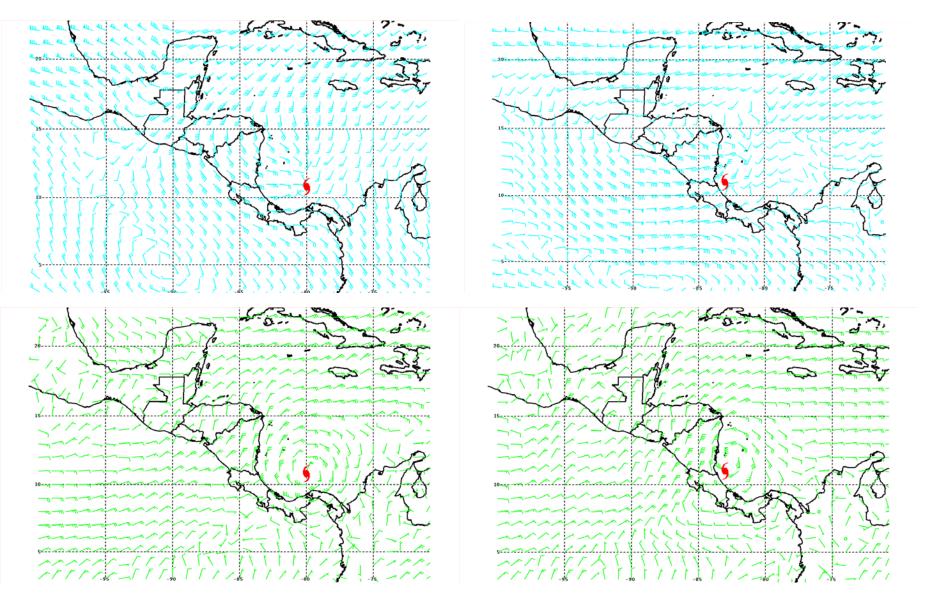
Model Track Guidance


Water Vapor Imagery and



Mid-to Upper Level Winds

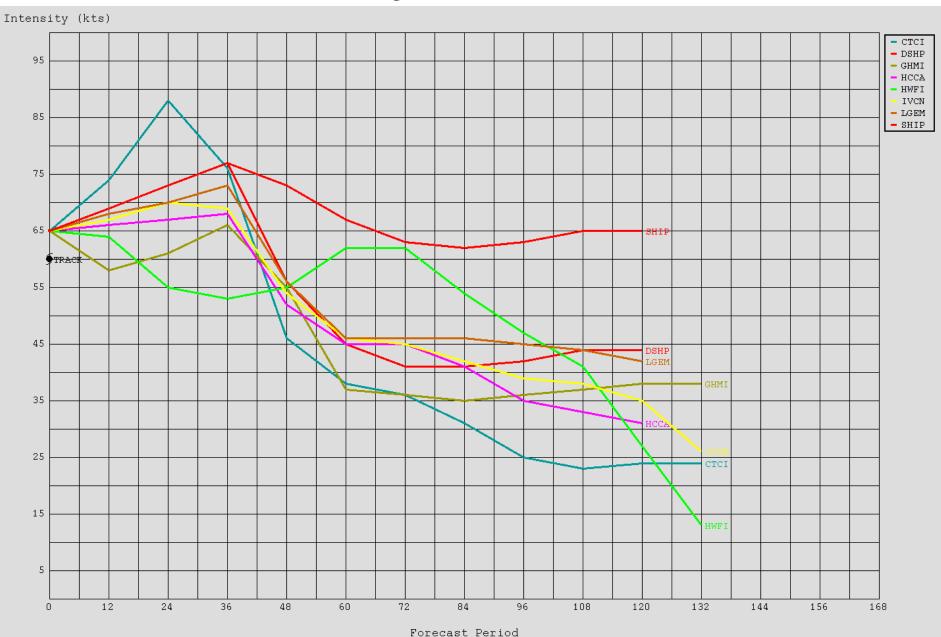
Infrared Imagery (Window Channel)



Oceanic Heat Content

Total Precipitable Water

200 hPa Wind 6 hr GFS forecast


200 hPa Wind 42 hr GFS forecast

850 hPa Wind 6 hr GFS forecast

850 hPa Wind 42 hr GFS forecast

Intensity Model Guidance

SHIPS/LGEM Model Guidance

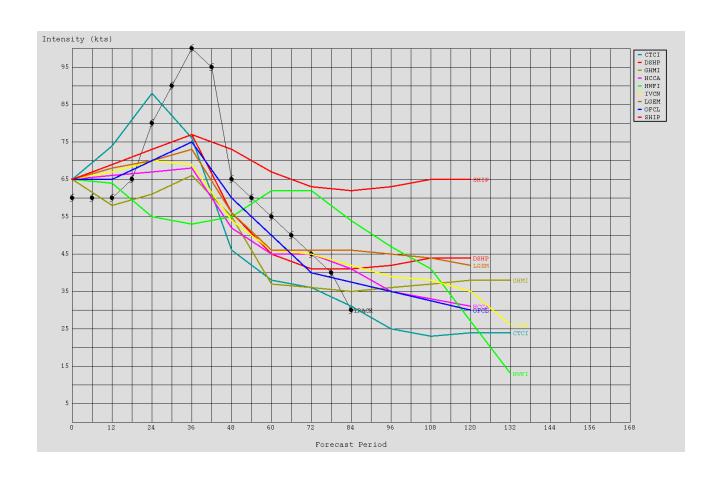
	* ATLANTIC						FORECAST *						
	-	• IR SA	AT DATA	A AVAII	LABLE,		OHC AV	/AILABI	LE	*			
TIME (HR)	0	6	12	18	24	36	48	60	72	84	96	108	120
V (KT) NO LAND	65	67	69	71	73	77	73	67	63	62	63	65	65
V (KT) LAND	65	67	69	71	73	77	56	45	41	41	42	44	44
V (KT) LGEM	65	67	68	69	70	73	56	46	46	46	45	44	42
Storm Type	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP	TROP
SHEAR (KT)	14	13	12	11	12	11	16	22	25	25	20	20	24
SHEAR ADJ (KT)	Ō	-1	-3	-4	-4		-1	-1	Ō	1	4	- 8	7
SHEAR DIR	136	151	151	123	116	119	133	135	125	125	115	108	89
SST (C)	29.0	29.0	29.0	29.0	29.1	29.2	28.7	28.1	28.1	28.7	29.1	29.1	28.6
POT. INT. (KT)	148	148	149	150	152	154	147	139	138	146	152	154	147
ADJ. POT. INT.	141	142	144	147	149	151	146	140	139	144	152	160	153
200 MB T (C)	-52.9	-53.0	-53.2	-52.6	-52.8	-53.3	-53.0	-53.6	-53.3	-54.1	-53.8		-54.1
200 MB VXT (C)	-0.2	-0.2	-0.1	0.0	0.1	0.1	0.1	0.2	0.3	0.1	0.0	0.0	0.0
TH_E DEV (C)	6	5	4	5	5	4	5	4	5	4	4	4	5
700-500 MB RH	63	66	67	69	7Ŏ	74	75	74^{-2}	71	65	67	60	58
MODEL VTX (KT)	17	18	18	18	17	20	15	11	´ 8	10	11	11	10
850 MB ENV VOR	51	63	64	66	62	62	61	46	48	28	- 8	-6	-7
200 MB DIV	68	86	109	104	61	64	61	45	61	65	80	77	6 5
700-850 TADV	0	1	0	0	1	1	6	10	9	10	8	´Ś	1
LAND (KM)	111	135	163	212	196	85	-55	83	31Í	412	463	559	695
LAT (DEG N)	10.6	10.8	10.9	11.0	11.1	11.1	$\frac{-33}{11.1}$	10.8	10.3	10.0	9.9	9.8	9.5
LONG(DEG W)	79.6	79.9	80.2	80.8	81.5	82.9	84.4	86.6	89.1	91.1	92.2	94.3	97.1
STM SPEED (KT)	79.6	79.9	5	6	01.5	02.7	9	12	11	71.1	92.2	12	14
HEAT CONTENT	44	41	37	35	35	31	24	3	12	, A	6	7	3
HEAT CONTENT	44	41	3/	35	35	31	24	3	12	4	0		3

FORECAST TRACK FROM OFCI INITIAL HEADING/SPEED (DEG/KT):290/ 2 CX,CY: -1/ 1
T-12 MAX WIND: 60 PRESSURE OF STEERING LEVEL (MB): 591 (MEAN=618)

GOES IR BRIGHTNESS TEMP. STD DEV. 50-200 KM RAD: 10.1 (MEAN=14.5) % GOES IR PIXELS WITH T < -20 C 50-200 KM RAD: 74.0 (MEAN=65.0)

PRELIM RI PROB (DV .GE. 30 KT IN 24 HR): 10.4

Rapid Intensification Index


** ATLANTIC RI INDEX
(SHIPS-RII PREDICTOR TABLE for 30 KT OR MORE MAXIMUM WIND INCREASE IN NEXT 24-h)

```
Predictor
                                 RI Predictor Range Scaled Value(0-1) % Contribution
                         Value
12 HR PERSISTENCE (KT):
                           5.0
                                               33.0
                                   -49.5
                                          to
                                                         0.66
                                                                        6.3
850-200 MB SHEAR (KT) :
                          12.5
                                                         0.63
                                          to
HEAT CONTENT (KJ/cm2)
                         38.4
                                             155.1
                                                         0.25
                                          to
STD DEV OF IR BR TEMP :
                          10.1
                                    37.5 to 2.9
                                                         0.79
                                   2.8 to -3.1
                                                         0.45
2nd PC OF IR BR TEMP :
                         0.1
MAXIMUM WIND (kt)
                       65.0
                               22.5 to 121.0
                                                         0.89
                       85.6
79.6
D200 (10**7s-1)
                                   -23.1
                                          to 181.5
                                                         0.53
                                                                        1.1
POT = MPI-VMAX (KT) :
                                   28.4 to 139.1
                                                         0.46
% AREA WITH TPW <45 mm:
                         0.0
                                   100.0
                                          to
                                               0.0
                                                         1.00
                                                                        1.0
BL DRY-AIR FLUX (w/m2):
                                          to -67.1
                                                         0.78
                                                                        0.0
                         156.8
                                   960.3
SHIPS Prob RI for 20kt/ 12hr RI threshold=
                                                   2.0 times sample mean (5.5%)
                                          11% is
SHIPS Prob RI for 25kt/ 24hr RI threshold=
                                          33% is
                                                   2.8 times sample mean (11.6%)
                                                   2.7 times sample mean (7.2%)
SHIPS Prob RI for 30kt/ 24hr RI threshold=
                                          19% is
SHIPS Prob RI for 35kt/ 24hr RI threshold=
                                          15% is
                                                   3.7 times sample mean (4.2%)
SHIPS Prob RI for 40kt/ 24hr RI threshold=
                                          11% is
                                                   3.8 times sample mean (2.8%)
SHIPS Prob RI for 45kt/ 36hr RI threshold= 21% is
                                                   4.3 times sample mean (4.9%)
SHIPS Prob RI for 55kt/ 48hr RI threshold= 20% is
                                                   3.8 times sample mean (
```

What is your 36 hr Intensity Forecast?

Answer: 36 hr Max Wind = 100 kt

NHC Official Forecast was 75 kt

Bonus Question: What TC was this?

Concluding Remarks

- There is less skill for intensity forecasting than track forecasting but considerable improvements have been made in last decade
- Current guidance is provided mainly by HWRF, DSHIPS, LGEM, IVCN and more recently, COAMPS-TC, HMON, GFS, FSSE and HCCA
 - Dynamical models more skillful for basin-wide intensity forecasts
 - Statistical methods more generally skillful for identifying RI cases
 - HWRF/HMON to be replaced by two versions of HAFS in 2023
- We still have significant difficulty in forecasting rapidly intensifying and rapidly weakening storms.
- The main hope for the future lies in improved dynamical models, coupled with enhanced observations and understanding of the hurricane's inner core - Hurricane Forecast Improvement Project (HFIP)
- Consensus approaches should also lead to future improvements
- GOES-16/-18 is providing new imagery and lightning data for dynamical 74 and statistical-dynamical intensity models