Intraseasonal TC Variability and Seasonal Hurricane Forecasting

2023 WMO Class

Eric Blake
Senior Hurricane Specialist
National Hurricane Center
3/7/2023
Outline

- Madden-Julian Oscillation (MJO)
- MJO analysis tools
- Kelvin Waves
- Seasonal forecasting
- Exercise
- Brief look at 2023
No Storm Formations in 2008

- Hurricanes and Tropical Storms
- Hurricanes

NOAA
Madden-Julian Oscillation

- An eastward propagating wave that circles the globe in about 30-60 days involving tropical convection.
- Detected in the Outgoing Longwave Radiation (OLR) and wind fields across the tropics.
- Later papers showed that it is an important modulator of TC activity, especially in the Pacific Ocean.

(Madden and Julian 1972)
Idealized MJO cross-section

Courtesy Fiona Martin, climate.gov blog
200 mb Velocity Potential fields—one way to track the MJO

Blue = ~divergence
Red = ~convergence

Center of the blue area tracks the most upper “divergence”, which is usually well-linked to thunderstorms
Time-longitude sections of anomalous 200-hPa velocity potential ($x 10^8$ m2 s$^{-1}$) averaged between 5$^\circ$N–5$^\circ$S for the last 180 days ending 05 MAR 2012: (Left) 5-day running means and (Right) 5-day running means with period mean removed. Anomalies are departures from the 1981–2010 period daily means. CLIMATE PREDICTION CENTER/NCEP
MJO characteristics

Note signal is much stronger in eastern Hemisphere than western.

Eastward phase speed is a lot slower in eastern than western Hemi (convective coupling).

In western hemisphere, upper-level signal usually much easier to track than lower-level.
MJO Effects in the Atlantic Basin

- The MJO can lose much of its strength before entering the Atlantic basin.

- In addition, the MJO is weakest during the late summer, near the peak of Atlantic activity.

- Western part of the basin most strongly affected (Maloney and Hartmann 2000).
Active MJO in the western Caribbean Sea and Gulf of Mexico produces more storms due to:

• Increase in low-level convergence (ITCZ moves farther north)
• Low-level vorticity is also increased due to westerly low-level flow meeting easterly trades
• Upper divergence is stronger than average during the westerly phase, with a drop in shear as well

Adapted from Maloney and Hartmann (2000)
• Most genesis points are near or behind the upper-level divergence center.

Figure 10: Velocity potential composites for different phases of the MJO cycle with hurricane/typhoon origin locations. Green shading indicates upper level divergence and brown shading indicates upper level convergence. Open circles indicate hurricane/typhoon origin centers.
A different way to visualize the MJO

- The axes (RMM1 and RMM2) represent daily values of the principal components from the two leading modes, following the active convection.
- The triangular areas indicate the location of the enhanced phase of the MJO.
- Counter-clockwise motion is indicative of eastward propagation.
- Distance from the origin is proportional to MJO strength.
- Line colors distinguish different months.
MJO: Plan view versus RMM diagram
200 mb Velocity Potential fields—
one way to track the MJO

Blue = ~divergence
Red = ~convergence

Center of the blue area
tracks the most upper
divergence, which is
usually well-linked to
thunderstorms
Question 1

What phases of the MJO are most favorable for Atlantic TC activity?

A. Phases 3/4
B. Phases 5/6
C. Phases 7/8
D. Phases 1/2
Normalized Activity by MJO Phase (1974-2007)

<table>
<thead>
<tr>
<th>MJO Phase</th>
<th>NS</th>
<th>NSD</th>
<th>H</th>
<th>HD</th>
<th>MH</th>
<th>MHD</th>
<th>ACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>2.7</td>
<td>22.9</td>
<td>2.3</td>
<td>13.5</td>
<td>1.4</td>
<td>4.9</td>
<td>57.5</td>
</tr>
<tr>
<td>Phase 2</td>
<td>3.0</td>
<td>24.7</td>
<td>2.5</td>
<td>13.2</td>
<td>1.8</td>
<td>4.2</td>
<td>53.0</td>
</tr>
<tr>
<td>Phase 3</td>
<td>2.6</td>
<td>19.8</td>
<td>1.7</td>
<td>12.1</td>
<td>0.9</td>
<td>2.1</td>
<td>41.4</td>
</tr>
<tr>
<td>Phase 4</td>
<td>1.7</td>
<td>12.1</td>
<td>1.1</td>
<td>8.1</td>
<td>0.7</td>
<td>2.7</td>
<td>32.0</td>
</tr>
<tr>
<td>Phase 5</td>
<td>2.7</td>
<td>14.8</td>
<td>1.6</td>
<td>6.3</td>
<td>0.7</td>
<td>1.3</td>
<td>35.7</td>
</tr>
<tr>
<td>Phase 6</td>
<td>2.6</td>
<td>13.1</td>
<td>1.2</td>
<td>3.9</td>
<td>0.6</td>
<td>0.9</td>
<td>20.3</td>
</tr>
<tr>
<td>Phase 7</td>
<td>1.6</td>
<td>9.4</td>
<td>0.6</td>
<td>3.7</td>
<td>0.5</td>
<td>1.1</td>
<td>17.5</td>
</tr>
<tr>
<td>Phase 8</td>
<td>1.9</td>
<td>12.2</td>
<td>1.1</td>
<td>6.5</td>
<td>0.6</td>
<td>1.9</td>
<td>25.3</td>
</tr>
</tbody>
</table>

Ratio of Phases 1+2 to Phases 6+7

<table>
<thead>
<tr>
<th></th>
<th>NS</th>
<th>NSD</th>
<th>H</th>
<th>HD</th>
<th>MH</th>
<th>MHD</th>
<th>ACE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.4</td>
<td>2.1</td>
<td>2.7</td>
<td>3.5</td>
<td>2.9</td>
<td>4.6</td>
<td>2.9</td>
</tr>
</tbody>
</table>

From Klotzbach (2010)
All Genesis Points

MJO Phases 1+2

MJO Phases 6+7
36 Major Hurricanes

MJO Phases 1-2 - Atlantic Major Hurricane Formations

13 Major Hurricanes

MJO Phases 6-7 - Atlantic Major Hurricane Formations
Kelvin Waves & Tropical Cyclones

Adapted from: Michael Ventrice (TWC), Kyle Griffin (UW) & Carl Schreck (NCICS)
MJO vs. KW

The **Madden-Julian Oscillation** (MJO) consists of an active and suppressed phase, dominated by low-level westerly and easterly anomalies, respectively. Convection is preferred in the active phase.

- A typical MJO moves eastward at 4 to 8 m s\(^{-1}\) with a zonal extent that spans planetary to synoptic scales.

A **Kelvin wave** is spatially very similar to the MJO, but is typically observed at higher zonal wavenumbers and moves eastward at 10 – 20 m s\(^{-1}\).

- Effects are more constrained within the Tropics and associated wind anomalies are spatially smaller than the MJO.

Adapted from Griffin (2014)
Kelvin Waves

- Alternating westerlies and easterlies on the equator
- Enhanced convection where low-level winds converge
- Active phase associated with latent heating & the generation of low-level relative vorticity due to presence of meridional flow
- Modifies ITCZ convection, which causes significant changes to a system’s local environment

Matsuno (1966)
Kiladis et al. (2009)

<table>
<thead>
<tr>
<th>Propagation:</th>
<th>Eastward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase speed:</td>
<td>10–20 m s(^{-1})</td>
</tr>
<tr>
<td>Period:</td>
<td>3–10 days</td>
</tr>
<tr>
<td>Wavelength:</td>
<td>2000–4000 km</td>
</tr>
</tbody>
</table>

Adapted from Carl Schreck 2017
• Convection and storm-relative westerlies intersect easterly wave 2 days before genesis
• Easterly wave circulation builds upward as the Kelvin wave propagates

• Kelvin tilt might explain lag in genesis from convection
 – 400-hPa is 30° longitude behind 850-hPa
 – Kelvin speed of 15 m s\(^{-1}\) gives a 2.5-day lag between 850 hPa and 400 hPa
Tropical wave + CCKW composite

East Pacific: 40 storms

- Composite Hovmöllers of storms forming at the most favorable lags (2-3d) from Kelvin wave crest
- The wave is invigorated with convection/rainfall, leading to genesis.
- CCKW most effective when some westerly flow already present
Tropical cyclogenesis events over the MDR (5-25°N, 15-65°W) relative to the CCKW during June-September 1979-2009

- Day 0 highlights the transition to statistically significant negative unfiltered OLR anomalies, or the eastern-most side of the convectively active phase of the CCKW.
- Error bars indicate the 95% confidence interval.
Atlantic CCKWs and genesis

Tropical cyclogenesis relative to the Kelvin wave
“Yet another strong CCKW is moving across the eastern Pacific…This system should move through the eastern Pacific within the next few days, with genesis possible in the far eastern Pacific Days 3-5.”

Ana & Trudy form
Real-world CCKWs have day-to-day weather patterns overlaid on them, making them harder to recognize.

When making genesis forecasts for a particular system, any CCKW information must be taken in context with the entire weather situation.

Knowledge about the base state (~120 d mean or ENSO), MJO phase, time of year and NWP output must all be considered in concert with CCKW interactions.

For example, if the base state is extremely unfavorable, can it overcome other enhancing factors? (e.g. most of the 2014 Atlantic hurricane season, 2015 EPac is the counter example) – 2020 everything formed regardless
Current NHC practices

• No operational standard on use of CCKW in genesis forecasts (more than half of forecasters use it).

• It is believed that global models handle the MJO much more accurately than individual CCKWs (too much dampening), and thus the forecaster can add value to the deterministic models.

• Any adjustments to 5-day genesis probabilities are small and subjectively determined.

• Also used as a way to increase forecaster confidence in a given situation if conceptual model of CCKWs and genesis matches model solutions.
• CPC, in combination with other NOAA/federal/university partners, issues a week 2 possible TC risk areas (in addition to other global hazards)

• These global forecasts are released Tuesday afternoons

• The TC-only forecasts are updated on Friday afternoons, if necessary, for the Atlantic/E Pacific only during week 2

• Week 3 experimental for 2024?
Global Tropics Hazards and Benefits Outlook - Climate Prediction Center

Week 1 - Valid: Sep 21, 2016 - Sep 27, 2016

Week 2 - Valid: Sep 28, 2016 - Oct 04, 2016

Confidence
High Moderate

Tropical Cyclone Formation: Development of a tropical cyclone (tropical depression - TD, or greater strength).
Above-average rainfall: Weekly total rainfall in the upper third of the historical range.
Below-average rainfall: Weekly total rainfall in the lower third of the historical range.
Above-normal temperatures: 7-day mean temperatures in the upper third of the historical range.
Below-normal temperatures: 7-day mean temperatures in the lower third of the historical range.

Produced: 09/20/2016
Forecaster: Rosencrans

Product is updated once per week, except from 6/1 - 11/30 for the region from 120E to 0, 0 to 40N. The product targets broad scale conditions integrated over a 7-day period for US interests only. Consult your local responsible forecast agency.
Seasonal Forecasting
Short history of NOAA seasonal hurricane forecasting

- The Climate Prediction Center (CPC) began issuing Atlantic seasonal hurricane forecasts after the Gray 1997 forecast bust.
- Outlooks issued in late May and early August.
- Collaborative effort between the CPC, National Hurricane Center and Hurricane Research Division.
- Outlooks are a qualitative combination of statistical and dynamical tools, but have become more quantitative over time.
El Niño

• Changes global atmospheric circulation by altering low-latitude deep convection.
• Moderate/strong events generally cause a reduced Atlantic season
• Weaker events have little relationship to Atlantic hurricane activity
Composite of tropical cyclone tracks during 14 moderate to strong El Niño years versus the next year

From Gray 1984
El Niño versus La Niña

Convection shifted eastward during El Niño causes more shear and sinking air over the Atlantic.

Convection shifted westward during La Niña causes less sinking air and shear over the Atlantic.
Niño regions

Nino 3.4 region generally has the strongest relationship with Atlantic hurricane activity.
Vertical Wind Shear

- Tropical cyclones generally require low vertical wind shear to develop, less than about 20 mph.

- Early-season vertical shear (June-July) relates well to August-October shear (peak season).

- Since 90% of the season is usually after 1 August, useful to update then.
Climatology is for lots of shear during hurricane season.
200mb zonal wind anomalies (m/s) during June-July of 10 ENSO events.
Sea-Surface Temperatures (SSTs)

- Warmer Atlantic waters generally mean a more active hurricane season
- Relative warmth of Atlantic to global tropics also important
- Atlantic warmth linked to Atlantic surface ridge strength
Correlation between Atlantic SST and Atlantic Hurricane Activity

rank corr with Jan NCEP OI v2 SST 1981:2016 p<10%
Composite map of June-July SST anomalies during 10 active hurricane seasons
The Atlantic Meridional Mode: SST, wind, and precip anoms

- Leading mode of basin-wide ocean-atmosphere interaction between SST and low-level winds
- Amplifies via the wind-evaporation-SST (WES) feedback mechanism
- Strongest signal during the spring, but persists into hurricane season
Forcing the AMM

SLP anomaly associated with (+) NAO

1. Subtropical SLP anomalies associated with NAO
2. Cool SST through enhanced evaporation (stronger easterlies)
3. Atmosphere responds through anticyclonic circulation, reinforcing wind anomalies → (-) AMM
4. Resulting feedback can last for several months, even after NAO forcing subsides

[FLIP sign for (-) NAO]

Courtesy Dima Smirnov ESRL
Comparative effects of the AMM (local) and ENSO (remote) on vertical wind shear in the Atlantic

Shear regressed onto AMM and N34 indices, and correlations between the indices and storm activity.
NOAA Forecast Methodology

1) Assess states of the ocean and atmosphere.
2) Use model forecasts for El Niño/Atlantic SSTs and incorporate any analog techniques and dynamical model forecasts of TCs.
3) Predict range of overall activity and probabilities of above-, near-, and below-average seasons.
4) Qualitative/Quantitative process.
5) No forecast of hurricane landfalls, just the total seasonal activity for the entire basin.
CFS-based TS, Hurricanes and ACE Index Forecast

Atlantic Basin – May forecast

<table>
<thead>
<tr>
<th>Year</th>
<th>Tropical Storms</th>
<th>Hurricanes</th>
<th>ACE Index % of Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>402</td>
<td>14</td>
<td>4</td>
<td>132</td>
</tr>
<tr>
<td>403</td>
<td>15</td>
<td>5</td>
<td>131</td>
</tr>
<tr>
<td>404</td>
<td>11</td>
<td>2</td>
<td>94</td>
</tr>
<tr>
<td>405</td>
<td>11</td>
<td>2</td>
<td>132</td>
</tr>
<tr>
<td>406</td>
<td>10</td>
<td>3</td>
<td>72</td>
</tr>
<tr>
<td>407</td>
<td>9</td>
<td>3</td>
<td>106</td>
</tr>
<tr>
<td>408</td>
<td>15</td>
<td>5</td>
<td>131</td>
</tr>
<tr>
<td>409</td>
<td>14</td>
<td>2</td>
<td>84</td>
</tr>
<tr>
<td>410</td>
<td>11</td>
<td>4</td>
<td>88</td>
</tr>
<tr>
<td>411</td>
<td>13</td>
<td>6</td>
<td>184</td>
</tr>
<tr>
<td>412</td>
<td>11</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>413</td>
<td>14</td>
<td>7</td>
<td>166</td>
</tr>
<tr>
<td>414</td>
<td>16</td>
<td>8</td>
<td>185</td>
</tr>
<tr>
<td>415</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>416</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>417</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>418</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2012

Slightly Above Normal Year

<table>
<thead>
<tr>
<th>Ensemble</th>
<th>Tropical Storms</th>
<th>Hurricanes</th>
<th>ACE Index % of Median</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12.6</td>
<td>3.9</td>
<td>121.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard Deviation</th>
<th>Tropical Storms</th>
<th>Hurricanes</th>
<th>ACE Index % of Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>2.2</td>
<td>2.3</td>
<td>39.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Range</th>
<th>Tropical Storms</th>
<th>Hurricanes</th>
<th>ACE Index % of Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-15</td>
<td>10.6</td>
<td>3.8</td>
<td>85.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Clim</th>
<th>Tropical Storms</th>
<th>Hurricanes</th>
<th>ACE Index % of Median</th>
</tr>
</thead>
</table>
Seasonal Forecast Caveats:

1) Even with perfect knowledge of all predictors – only 50-60% of the variance in TC activity is explained. This could increase as dynamical model skill grows.

2) This make a 1-category forecast error possible in 1 out of 3 or 4 years, and a 2-category error in 1 in ~7 years.

3) In seasonal forecasting, you will be flat wrong some years despite your best efforts. 2013 is a prime example.
Model Forecast Summary: 2013 Atlantic Outlook

Model predicted ranges (± 1 σ) and mean activity (in parenthesis). The model averages (yellow) and NOAA's outlook (Red) are shown at bottom.

<table>
<thead>
<tr>
<th>Model</th>
<th>Named Storms</th>
<th>Hurricanes</th>
<th>Major Hurricanes</th>
<th>ACE (% Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC Regression:</td>
<td>14-18 (16)</td>
<td>7-9 (8)</td>
<td>3-4.5 (3.75)</td>
<td>140-170 (155)</td>
</tr>
<tr>
<td>CPC Binning : Nino 3.4+SSTA</td>
<td>7.9-21.5 (14.7)</td>
<td>4.2-11.5 (7.85)</td>
<td>2.1-5.9 (4)</td>
<td>69-217 (143)</td>
</tr>
<tr>
<td>CPC Binning ENSO+SSTA</td>
<td>10.1-21 (15.55)</td>
<td>5.2-11.7 (8.45)</td>
<td>2.8-5.9 (4.35)</td>
<td>106-229 (167)</td>
</tr>
<tr>
<td>CPC Binning ENSO+SSTA</td>
<td>13.4-19.4 (16.4)</td>
<td>5.2-11.2 (8.2)</td>
<td></td>
<td>111-199 (155)</td>
</tr>
<tr>
<td>CFS: Hi-Res T-382</td>
<td>12-16 (14)</td>
<td>6-9 (7.5)</td>
<td>3-4 (3.5)</td>
<td>112-168 (140)</td>
</tr>
<tr>
<td>CFS-V2 T126: 1</td>
<td>13-17 (15)</td>
<td>7-10 (8.5)</td>
<td>3-4 (3.5)</td>
<td>121-182 (152)</td>
</tr>
<tr>
<td>CFS-V2 T126: 2</td>
<td>13-17 (15)</td>
<td>6-10 (8)</td>
<td>3-4 (3.5)</td>
<td>119-184 (152)</td>
</tr>
<tr>
<td>CFS-V2 T126: 3</td>
<td>8.9-16.3 (12.6)</td>
<td>5.5-10.5 (8)</td>
<td></td>
<td>90-167 (128)</td>
</tr>
<tr>
<td>ECMWF:</td>
<td>7.6-14.4 (11)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guidance Mean</td>
<td>11.1-17.8 (14.5)</td>
<td>5.8-10.4 (8.1)</td>
<td>2.8-4.7 (3.8)</td>
<td>108-190 (149)</td>
</tr>
<tr>
<td>NOAA Outlook</td>
<td>13-20 (16.5)</td>
<td>6-11 (8.5)</td>
<td>3-6 (4.5)</td>
<td>120-205 (163)</td>
</tr>
<tr>
<td>Actual:</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>39</td>
</tr>
</tbody>
</table>
Why issue a seasonal hurricane outlook then?

• One of the top questions NOAA gets in the offseason is “What’s the season going to be like?”

• Large amount of media coverage makes it ideal to get the preparedness/awareness message out, even if most people can’t use the forecast.

• Gets people thinking about the upcoming hurricane season/activity.

• Specialized users (reinsurance companies, offshore interests etc.)
Atlantic - May and August Outlooks

<table>
<thead>
<tr>
<th></th>
<th>2002-2022</th>
<th></th>
<th>2009-2022</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>May</td>
<td>August</td>
<td>May - Since 2008</td>
<td>August - Since 2008</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>H</td>
<td>MH</td>
<td>ACE</td>
</tr>
<tr>
<td>May</td>
<td>62%</td>
<td>52%</td>
<td>62%</td>
<td>33%</td>
</tr>
<tr>
<td>August</td>
<td>57%</td>
<td>57%</td>
<td>62%</td>
<td>48%</td>
</tr>
</tbody>
</table>

- NS - Named Storms
- H - Hurricanes
- MH - Major Hurricanes (Cat 3,4,5)
- ACE - Accumulated Cyclone Energy

- Percent that a forecast parameter verifies within the given ranges
- Standardized in 2009 for a goal of 70%, plus added dynamical guidance in that year
Exercise

• Using what you have been taught about seasonal forecasting, make a seasonal forecast with the atmospheric and oceanic slides in the following slides.

• Please forecast ranges of activity for tropical storms, hurricanes, major hurricanes and ACE.

• Remember long term averages are 14 TS, 7 H, 3 MH and ACE ~ 100

• What are the expected climate conditions for hurricane season? How will these conditions affect your forecast?
Pacific SST Anomalies During Last 30 days
Heat Content Anomalies (°C) in the Equatorial Pacific

Equatorial oceanic Kelvin waves are indicated by dashed black lines.
The latest weekly SST departures are:

- Niño 4: 0.2°C
- Niño 3.4: -0.2°C
- Niño 3: -0.3°C
- Niño 1+2: -0.6°C

SSTs are slightly above average in the central equatorial Pacific (Niño 4 region) and slightly below average across the east-central equatorial Pacific (Niño 3.4 and Niño 3 regions).
Sub-Surface Temperature Departures (°C) in the Equatorial Pacific

Most recent monthly analysis
850-hPa Zonal Wind Anomalies in the Equatorial Pacific
Anomalous OLR

Last 3 Weeks
ENSO Forecast Plume from mid-April

Model Predictions of ENSO from Apr

IRI/CPC

El Niño
Neutral
La Niña

Nino3.4 SST Anomaly (°C)

OBSERVED FORECAST

JFM Mar MAM AMj MJJ JJAS ASO SON OND NDJ DJF

Dynamical Models
- NASA GMAO
- NCEP CFSv2
- JMA
- BCC_CSM1.1m
- LDEO
- MFS/POAMA
- ECMWF
- UKMO
- KMA SNU
- IOCAS ICM
- COLA CCCMA
- MaxFRANCE
- SINTEX-F
- CS-IRIMII
- GFDL CM2.1
- CMC CANZIP
- GFDL FLOR

Statistical Models
- PSD-DU LIM
- CPC MKOV
- CPC CA
- CSU CLIPR
- UBC NNET
- FSU REGR
- UCLA-TCD
CPC/IRI ENSO Probability Forecast (issued in early April)

Early-April CPC/IRI Official Probabilistic ENSO Forecasts

ENSO state based on Niño3.4 SST Anomaly
Neutral ENSO: -0.5 °C to 0.5 °C

- La Niña
- Neutral
- El Niño

Climatological Probability:
- La Niña
- Neutral
- El Niño

Probability (%)

Time Period: MAM, AMJ, MJJ, JJA, JAS, ASO, SON, OND, NDJ
CFS Predictions
Model SSTA Forecasts

CFS-Hi Res (T-382)

June-August

Aug-Oct

NMME Predictions for ASO

CFS-V2 Low-Res (T-128) for ASO
CFS-Hi-Res Hurricane Forecast (bias corrected)

CFS Forecast

<table>
<thead>
<tr>
<th></th>
<th>Tropical Storms</th>
<th>Hurricanes</th>
<th>ACE Index (% of Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensemble</td>
<td>11.9</td>
<td>5.0</td>
<td>81.2</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>2.3</td>
<td>1.5</td>
<td>21.5</td>
</tr>
<tr>
<td>Range</td>
<td>10 – 14</td>
<td>4 – 6</td>
<td>60 – 103</td>
</tr>
<tr>
<td>Obs Clim</td>
<td>12.1</td>
<td>6.4</td>
<td>100</td>
</tr>
</tbody>
</table>

Regression Forecast Based on the CFS SSTA predictions (ONI, MDR, and MDR minus Tropics)

<table>
<thead>
<tr>
<th></th>
<th>Tropical Storms</th>
<th>Hurricanes</th>
<th>ACE Index (% of Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>10</td>
<td>5.0</td>
<td>72</td>
</tr>
</tbody>
</table>

Regression Forecast based on the CFS predicted ONI and SSTA=0°C in both MDR and Tropics)

<table>
<thead>
<tr>
<th></th>
<th>Tropical Storms</th>
<th>Hurricanes</th>
<th>ACE Index (% of Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>13</td>
<td>7.0</td>
<td>117</td>
</tr>
</tbody>
</table>
Low-level Circulation
Last 45 Days

Sea-level Pressure (contours) and Anomalies (shading):
45-Day average. Contour interval is 1 hPa. Anomalies are departures from the 1981–2010 period monthly means. NOAA CLIMATE PREDICTION CENTER/NCEP

Sea-level Anomalous Wind Speed (shading) and Vector:
1000-hPa wind speed (shading, m s⁻¹) and vector: 45-Day average. (Top) Total and (Bottom) Anomalies. Vector scales are below plots. Anomalies are departures from the 1981–2010 period monthly means. NOAA CLIMATE PREDICTION CENTER/NCEP

700-hPa Anomalous Wind Speed (shading) and Vector:
700-hPa wind speed (shading, m s⁻¹) and vector: 45-Day average. (Top) Total and (Bottom) Anomalies. Vector scales are below plots. Anomalies are departures from the 1981–2010 period monthly means. NOAA CLIMATE PREDICTION CENTER/NCEP
Atlantic Model Forecast Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Named Storms</th>
<th>Hurricanes</th>
<th>Major Hurricanes</th>
<th>ACE (% Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC Regression:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nino 3.4 (-0.5 to 0.5C)</td>
<td>10.7-15.2(12.95)</td>
<td>5.6-9.4(7.5)</td>
<td>2.2-4(3.1)</td>
<td>95-179(137)</td>
</tr>
<tr>
<td>MDR SSTA (-0.1 to 0.4C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDR-Trop (-0.15 to 0.15C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPC Binning:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nino 3.4 (-0.5 to 0.5C)</td>
<td>9-15.7(12.4)</td>
<td>5.3-8.3(6.8)</td>
<td>0.7-3.7(2.2)</td>
<td>54-139(96)</td>
</tr>
<tr>
<td>MDR SSTA (-0.1 to 0.4C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDR-Trop (-0.15 to 0.15C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFS: Hi-Res</td>
<td>10-14(12)</td>
<td>4-6(5)</td>
<td></td>
<td>60-103(82)</td>
</tr>
<tr>
<td>CFS: Hi-Res (SSTA bias adjusted)</td>
<td>10.9-14.9(12.9)</td>
<td>6-8(7)</td>
<td></td>
<td>101-144(122)</td>
</tr>
<tr>
<td>CFS-V2 T128</td>
<td>12-15(13.5)</td>
<td>6-8(7)</td>
<td>3-4(3.5)</td>
<td>106-159(133)</td>
</tr>
<tr>
<td>NMME</td>
<td>11-15(13)</td>
<td>6-8(7)</td>
<td>3-4(3.5)</td>
<td>116-163(140)</td>
</tr>
<tr>
<td>ECMWF:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1-12.9(10)</td>
<td>2.8-7.6(5.2)</td>
<td>64.8-116.6 (91)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UKMET</td>
<td>6-14(10)</td>
<td>3-7(5)</td>
<td>56-124(90)</td>
<td></td>
</tr>
<tr>
<td>Guidance Mean</td>
<td>9.6-14.6(12.1)</td>
<td>4.8-7.8(6.3)</td>
<td>2.2-3.9(3.1)</td>
<td>81-141(111)</td>
</tr>
</tbody>
</table>
What ACE did you predict for the exercise?

A. Under 70
B. 70-100
C. 101-130
D. Over 130
What about 2023?
Current Global SST anomalies

CDAS Sea Surface Temperature Anomaly (°C) (based on CFSR 1981-2010 Climatology)
Analysis Time: 06z Mar 06 2023
Neutral conditions in the Pacific
Thermocline- loaded

Equatorial Temperature Anomaly (°C)
Pentad centered on 29 DEC 2022
CFS highest probability of El Niño conditions in summer

CFSv2 forecast Niño3.4 SST anomalies (K) (PDF&spread corrected)

El Niño
Neutral
La Niña

(Chloromatology base period: 1991–2020)
CFS ASO Seasonal Forecasts from Mar 6

SST (very warm Atlantic & ENSO)

Vertical Shear (higher than normal)
Most ECMWF members (very) warm in summer
Niño models aren’t very good though!
Conclusions

• The MJO and Kelvin waves modulate TC activity around the globe (Epac more than Atlantic)
• El Niño/La Niña conditions are probably the most important factor in a seasonal forecast.
• Tropical Atlantic Ocean water temperatures and multi-decadal cycles are also very important.
• There are also year-to-year differences in vertical wind shear, sea-level pressures, and global circulation changes during the early part of the season that may give clues to how the rest of the season may turn out.
• 2023 hardest kind of forecast – possible ENSO onset year – seems like average/below activity for now.