



# **Tropical Cyclone Track Prediction**

Richard J. Pasch and David A. Zelinsky National Hurricane Center

RA-IV Workshop on Hurricane Forecasting and Warning April 9, 2024



### Intensity impact on Track







# **Tropical Cyclone Motion**



- To a first approximation, TC motion is governed by conservation of relative vorticity (vortex moves with the large-scale steering flow).
- Second order includes the Beta term (conservation of absolute vorticity).
- Divergence term (e.g., wavenumber 1 asymmetry in convection, interactions with orography, friction)
- Vertical motions (e.g., twisting term) less important.
  - 3-d dynamical model includes all of these terms.

#### SCALE ANALYSIS OF THE VORTICITY EQUATION

Use scales for tropical cyclone outer wind:  $L \sim 500 \ km$ Rotational wind  $V \sim 10 m/s$ Divergent wind  $U \sim 1 m/s$  $\Delta P \sim 10^5 Pa$  $T \sim \frac{L}{V} \sim 5 \times 10^4 sec$  $\zeta \sim \frac{V}{L} \sim 2 \times 10^{-5} sec^{-1}$  $\delta \sim \frac{U}{L} \sim 2 \times 10^{-6} sec^{-1}$  $\omega \sim \delta \Delta P \sim 0.2 \quad Pa/sec$  $\frac{\partial \zeta}{\partial t} = -V \cdot \nabla \zeta - \omega \frac{\partial \zeta}{\partial P} - \beta v - (\zeta + f)\delta - k \cdot \nabla \omega \times \frac{\partial V}{\partial P}$   $(i) \quad (4) \quad (2) \quad (3) \quad (4)$ 4×10 4×10 2×10 4×10 1 × 10 4 x10



## Large Scale Steering



- Tropical Cyclones generally move with the large-scale atmospheric flow
  - Similar to a leaf or a cork in a stream
- Track Forecasting is a relatively wellunderstood problem
- Important atmospheric features are often large and identifiable
- Numerical computer models forecast track fairly well (most of the time)





## The Beta Effect



- The circulation of a TC, combined with the North-South variation of the Coriolis parameter, induces asymmetries known as Beta Gyres.
- Beta Gyres produce a net steering current across the TC, generally toward the NW at a few knots. This motion is known as the Beta Drift.





# Track Forecast Errors/Skill at NHC







#### **Track Forecasting Review**



| What is the most imp             | portant factor for tropical cyclone track? Select the best answer.                                                              | c 🖉 0 |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------|
| Large-scale steering flow        |                                                                                                                                 | 0%    |
| Internal dynamics of the eyewall |                                                                                                                                 | 0%    |
| Beta effect                      |                                                                                                                                 | 0%    |
| Storm intensity                  |                                                                                                                                 | 0%    |
| St                               | art the presentation to see live content. For screen share software, share the entire screen. Get help at <b>pollev.com/app</b> |       |



### Average 72 h track forecast error in 2022





![](_page_8_Picture_0.jpeg)

## How to convert to a point forecast?

![](_page_8_Picture_2.jpeg)

| How do you convert from a model to something that NHC can use to make a point forecast? Select the best answer. |    |  |  |
|-----------------------------------------------------------------------------------------------------------------|----|--|--|
| Manually find the location of the storm based on simulated satellite<br>imagery (Dvorak)                        | 0% |  |  |
| The model reports location of local pressures minimums in pressure                                              | 0% |  |  |
| Run a tracker on the model output that uses multiple levels/variables                                           | 0% |  |  |
| Use Artificial Intelligence to produce a forecast                                                               | 0% |  |  |

![](_page_9_Picture_0.jpeg)

![](_page_9_Picture_2.jpeg)

- Need to determine a point location and maximum winds of a storm in model output to use while making a track or intensity forecast
- An external tracker is applied to the model fields \*after\* the model run is complete
- A weighted average of the centroid positions of several low-level variables is used:
- 850 mb vorticity
- 700 mb vorticity
- Surface/10m vorticity
- 850 mb geopotential height
- 700 mb geopotential height
- Mean Sea Level Pressure
- 3 secondary parameters (850 mb/700 mb/10m wind speed minimum)

![](_page_10_Picture_0.jpeg)

#### Why the need for a multi-variate external tracker?

![](_page_10_Picture_2.jpeg)

![](_page_10_Figure_3.jpeg)

Gustav in GFS: The SLP center was found 188 km from the vorticity center

![](_page_11_Picture_0.jpeg)

![](_page_11_Picture_2.jpeg)

- Forecasts that are available in time for forecast deadlines are called "early" models (TABs, CLIPER).
- For the 12Z forecast cycle, the latest available run of each model is taken (from the 06Z or even 00Z cycle), and adjusted to apply at 12Z. These modified forecasts are known as "interpolated" models (HWFI, GFSI, etc.).

![](_page_12_Picture_0.jpeg)

#### Early vs. Late Models

![](_page_12_Picture_2.jpeg)

 Interpolated models are created by adjusting the previous model run such that its 6 h forecast position exactly agrees with the current storm position. Then the rest of the forecast is adjusted, with the magnitude of the adjustment generally decreasing with time.

![](_page_12_Figure_4.jpeg)

The "early" version of the model is what the forecasters actually have available to them when making a forecast

OFCL is verified against the early models

![](_page_13_Picture_0.jpeg)

# How do you resolve this difference in model guidance for your forecast?

![](_page_13_Picture_2.jpeg)

![](_page_13_Figure_3.jpeg)

![](_page_13_Picture_4.jpeg)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

4/9/2024

![](_page_14_Picture_0.jpeg)

# How do you resolve the difference between guidance models?

![](_page_14_Picture_2.jpeg)

![](_page_14_Figure_3.jpeg)

Poor organization (esp. lack of deep convection in the core) would argue against Jeanne being carried eastward by upperlevel westerlies.

This reasoning allowed the forecasters to largely disregard the GFS and form a "selective consensus" of the remaining models.

![](_page_15_Picture_0.jpeg)

#### 48-h Model Track Errors by Storm

![](_page_15_Picture_2.jpeg)

![](_page_15_Figure_3.jpeg)

![](_page_16_Picture_0.jpeg)

# Consensus on average performs better than any individual model

![](_page_16_Picture_2.jpeg)

![](_page_16_Figure_3.jpeg)

![](_page_17_Picture_0.jpeg)

### **Ensembles and Consensus**

- Often, the most successful models are consensus aids formed from an ensemble of good performing models with a high degree of independence.
- Recently, some single-model consensus models (like the GFS and ECMWF ensembles) have performed as well as the deterministic version of the same model especially at longer ranges (day 5 and beyond).

![](_page_17_Figure_4.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_19_Picture_0.jpeg)

### "Smart" consensus models

![](_page_19_Picture_2.jpeg)

al152017

#### • HCCA and FSSE

 Multiple linear regression to unequally weigh models based on past errors and biases

![](_page_19_Figure_5.jpeg)

2017091806

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_21_Picture_0.jpeg)

### Track Forecasting at the NHC: Using Models

![](_page_21_Picture_2.jpeg)

- Dynamical model consensus is an excellent first guess for the forecast (and often a good final guess!). Continuity dictates that it must be considered in view of the previous official forecast.
- Evaluate the large-scale environment using conventional data and satellite imagery (e.g., water vapor)
  - Try to assess steering influences so that you understand and perhaps evaluate the model solutions
- Compare the models' forecast of the environmental features, not just the TC tracks.
  - Evaluate the initialization of the TC in the model fields. Unrealistic TC can affect the likelihood of a successful forecast.
  - Consider the recent performance of the various models, both in terms of accuracy and consistency.
  - Spread of models can dictate forecaster confidence.

![](_page_22_Picture_0.jpeg)

#### Dennis Guidance 6 July 1200 UTC

![](_page_22_Picture_2.jpeg)

![](_page_22_Figure_3.jpeg)

Scenario: you have just created a forecast for Storm Dennis based on the track guidance on July 6<sup>th</sup> at 12Z. There is a lot of spread in the models at 120-hrs, so you went close to the multi-model consensus.

![](_page_23_Picture_0.jpeg)

# Dennis Guidance 6 July 1800 UTC: 6 hours later, Guidance shifts sharply westward toward New Orleans.

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_24_Picture_0.jpeg)

# Dennis Guidance 7 July 0000 UTC: Little overall change to guidance, but NGPI shifts slightly eastward.

![](_page_24_Picture_2.jpeg)

![](_page_24_Picture_3.jpeg)

4/9/2024

![](_page_25_Picture_0.jpeg)

Dennis Guidance 7 July 0600 UTC: Rest of the guidance shifts sharply eastward, leaving official forecast near the center of the guidance envelope

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_3.jpeg)

#### one forecast to the next, and then having to go back to the original Windshield Tromboning

- Additional Track Forecasting Considerations
  - Previous official forecast exerts a strong constraint on ٠ the current forecast
    - Can damage credibility by making big changes from

Wipering

**Tropical Cyclone Track Prediction** 

- Consequently, changes to the previous forecast are • normally made in small increments
- Continuity is also important within a given forecast ٠
  - Gradual/steady changes in direction or speed from 12 to 24 to 36 h, etc

![](_page_26_Picture_10.jpeg)

![](_page_26_Picture_11.jpeg)

![](_page_26_Picture_12.jpeg)

#### **Consistency Matters**

![](_page_27_Picture_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_28_Picture_0.jpeg)

#### **Trochoidal Motion**

![](_page_28_Picture_2.jpeg)

![](_page_28_Picture_3.jpeg)

- Substantial oscillation (wobble) of the center of a TC about its mean motion vector
- Primarily a side effect of convective asymmetries in the inner core
- Amplitude of motions varies but higher-frequency "wobbles" lost in 'best track' smoothing process
- Virtually impossible to forecast!

![](_page_29_Picture_0.jpeg)

### 6 and 7 day forecasts

![](_page_29_Picture_2.jpeg)

![](_page_29_Figure_3.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Picture_3.jpeg)

#### SUMMARY OF NWP MODELS USED BY NHC FOR TC TRACK PREDICTION

| ATCF ID Tracker         | Global/Regional<br>Model Name                                    | Horizontal<br>Resolution                       | Vertical Levels<br>and Coordinates | Data Assimilation                                              | Convective<br>Scheme                                                                       | Cycle/Run Frequency                                                                       | INCLUSION IN CONSENSUS |
|-------------------------|------------------------------------------------------------------|------------------------------------------------|------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------|
| NVGM/NVGI               | Navy Global<br>Environmental Model                               | Spectral<br>~31km                              | 60<br>Hybrid Sigma-<br>pressure    | NAVDAS-AR<br>4D-VAR                                            | Simplified Arakawa-<br>Schubert (SAS)                                                      | 6 hr (144 hr)<br>00/06/12/18 UTC                                                          | NO                     |
| AVNO/AVNI (GFSO/GFSI)   | Global Forecast system                                           | Finite Volume<br>Cubed Sphere<br>(FV3)<br>13km | 127<br>Hybrid Sigma-<br>pressure   | GSI/4D-VAR<br>EnKF hybrid,<br>including TC central<br>pressure | Simplified Arakawa-<br>Schubert<br>[Arakawa and Schubert<br>(1974) / Pan and Wu<br>(1994)] | 6 hr (240 hr)<br>00/06/12/18 UTC                                                          | YES                    |
| EMX/EMXI<br>EMX2        | European Centre for<br>Medium-Range Weather<br>Forecasts         | Spectral<br>~9km                               | 137<br>Hybrid Sigma-<br>Pressure   | 4D-VAR                                                         | Tiedke mass flux<br>[Tiedke (1989)]                                                        | 12 hr (240 hr)<br>00/12 UTC<br>06/18 UTC forecasts out<br>to 90 hr                        | YES                    |
| EGRR/EGRI<br>EGR2       | U.K. Met Office<br>Global Model                                  | Grid Point<br>~10km                            | 70<br>Hybrid Sigma-<br>Pressure    | 4D-VAR<br>Ensemble Hybrid                                      | UKMET<br>[Gregory and Rowntree<br>(1990)]                                                  | 12 hr (144 hr)<br>00/12 UTC                                                               | YES                    |
| СМС/СМСІ                | Canadian Deterministic<br>Prediction System                      | Grid Point<br>~15km                            | 80<br>Hybrid Sigma-<br>Pressure    | 4D-VAR<br>ensemble Hybrid                                      | Kain -Fritsch<br>[Kain and Fritsch (1990,<br>1993)]                                        | 12 hr (240 hr)<br>00/12 UTC                                                               | NO                     |
| HAFSA/HAFSB (also HWRF) | Hurricane Analysis<br>and Forecast System                        | Grid Configuration<br>Nested; 5.4-1.8 km       | 81<br>Hybrid Sigma-<br>Pressure    | 4D-VAR Hybrid<br>GDAS GFS<br>IC/BC                             | SAS mom. mix. + GFS<br>shallow convection (6km<br>and 18km)<br>2km nest – none             | 6 hr (126 hr)<br>00/06/12/18 UTC<br>Runs commence on<br>NHC/JTWC request                  | YES (HWRF)             |
| HMON                    | Hurricane Multi-scale<br>Ocean-coupled Non-<br>hydrostatic model | Grid Configuration<br>3 nests<br>18-6-2 km     | 51                                 | None                                                           | SAS                                                                                        | 6 hr (126 hr)<br>00/06/12/18 UTC<br>Runs commence on<br>NHC/JTWC request                  | NO                     |
| стсх/стсі               | NRL COAMPS-TC<br>(using GFS for IC and<br>BC)                    | Grid Configuration<br>3 nests<br>45-15-5 km    | 40                                 | 3D-VAR (NAVDAS)<br>EnKF DART                                   | Kain-Fritsch<br>Kain and Fritsch (1990,<br>1993)                                           | 6 hr (126 hr)<br>00/06/12/18 UTC<br>Runs commence on 1 <sup>st</sup><br>NHC/JTWC advisory | YES 42                 |

![](_page_32_Picture_0.jpeg)

### HAFS (Hurricane Analysis and Forecast System)

![](_page_32_Picture_2.jpeg)

| HAFSv1.0                        | Domain                                                                                     | Resolution                                                 | DA/VI                                              | Ocean/Wave<br>Coupling                            | Physics         | Basins                                                             |
|---------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-----------------|--------------------------------------------------------------------|
| HAFS-A<br>(HWRF<br>replacement) | Storm-centric with<br>one moving nest,<br>parent: ~78x75 degree,<br>nest:<br>~12x12 degree | Regional (ESG)),<br>~5.4/1.8 km, ~L81,<br>~2 hPa model top | Vmax > 40 kt warm-<br>cycling VI and 4DEnVar<br>DA | Two-way MOM6, one-way<br>WW3 coupling for NHC AOR | Physics suite-1 | All global Basins<br>NHC/CPHC/JTWC<br>Max 7 Storms<br>Replace HWRF |
| HAFS-B<br>(HMON<br>replacement) | Storm-centric with<br>one moving nest,<br>parent: ~75x75 degree,<br>nest:<br>~12x12 degree | Regional (ESG), ~6/2<br>km, ~L81,<br>~2 hPa model top      | Vmax > 40 kt warm-<br>cycling VI and 4DEnVar<br>DA | Two-way HYCOM<br>No Wave                          | Physics suite-2 | NHC/CPHC<br>Max 5 Storms<br>Replace HMON                           |

![](_page_32_Figure_4.jpeg)

![](_page_32_Figure_5.jpeg)

![](_page_33_Picture_0.jpeg)

#### **Track Forecasting Review**

![](_page_33_Picture_2.jpeg)

What is the most important factor for tropical cyclone track? Select all that apply.

a) Large-scale steering flowb) Internal dynamics of the eyewallc) Beta effectd) Storm intensity

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_2.jpeg)

How do you convert from a model to something that NHC can use to make a point forecast?

a) Manually find the location of the storm based on simulated satellite imagery (Dvorak)

b) The model reports location of local pressures minimums in pressure

c) Run a tracker on the model output that uses multiple levels/variables

d) Use Artificial Intelligence to produce a forecast

![](_page_35_Picture_0.jpeg)

### My models are not helping me out!

![](_page_35_Picture_2.jpeg)

![](_page_35_Figure_3.jpeg)

![](_page_35_Picture_4.jpeg)

How do you resolve this difference in model guidance for your forecast?

- A. It's best to just automatically select the model consensus in this situation
- B. Take a deeper look at the storm structure and surrounding environment and try to determine which tracks do and do not make sense
- C. It is best to rely on the ECMWF consistent performance

![](_page_36_Picture_0.jpeg)

#### Which Model is the Best?

![](_page_36_Picture_2.jpeg)

Which of the following is typically the best type of guidance or model to use for track forecasting?

a) Statistical-dynamical model (SHIPS/LGEM)
b) High-resolution global model (ECMWF/GFS)
c) Multi-model consensus (TVCN/HCCA)
d) Regional hurricane model (HWRF/HMON)
e) Trajectory and Beta Models (TABS/TAMS)
f) CLIPER

![](_page_37_Picture_0.jpeg)

#### Dennis Guidance 6 July 1800 UTC

![](_page_37_Picture_2.jpeg)

![](_page_37_Figure_3.jpeg)

- 6 hours later, Guidance shifts sharply westward toward New Orleans.
- Where should you put your forecast (where will landfall occur)?
- A On previous track
  - C- consensus

![](_page_38_Picture_0.jpeg)

# Dennis Guidance 7 July 0000 UTC: Little overall change to guidance, but NGPI shifts slightly eastward.

![](_page_38_Picture_2.jpeg)

![](_page_38_Picture_3.jpeg)

- Little overall change to guidance, but NGPI shifts slightly eastward.
- Revote (A, B or C)

4/9/2024

![](_page_39_Picture_0.jpeg)

#### Dennis Guidance 7 July 0600 UTC

![](_page_39_Picture_2.jpeg)

![](_page_39_Figure_3.jpeg)

 Rest of the guidance shifts sharply eastward, leaving official forecast near the center of the guidance envelope

Revote